

Department Construction Name REHAU Web Design New Zealand Phone 9272 2264 Email FHDesign.ANZ@rehau.com Date 27/09/2016

WARMNZ Todd Bowmast 5 Waimana Road Takanini, Auckland

REHAU Hydronic System detailed design - Heating Project: 15-145 Mainfreight Freezer, Christchurch

Dear Todd,

We have pleasure in submitting our detailed design documents for your above mentioned project. This design and the associated data have been prepared according to the information, diagrams and/or drawings provided. Please check and confirm all parameters and results prior to using them.

By utilising our design service and the results you recognise the current REHAU Terms and Conditions of Sale, which are available on request or at www.rehau.com/LZB.

In case this design requires amendments, please send an email with all required changes to FHDesign.ANZ@rehau.com

Additional charges may apply for design changes or required corrections not caused by us.

We thank you for your interest in the REHAU Hydronic System detailed design and look forward to the application of our products.

Please do not hesitate to contact us if you require any further clarification or assistance.

Kind regards

REHAU Web Design New Zealand REHAU Pty Ltd

Attachments:

Performance overview (proposed final) Hydraulic Balancing Data for each manifold Bill Of Material (proposed final) Circuit layout as CAD drawing

REHAU HYDRONIC SYSTEM DESIGN NOTES

		V.7.7
PROJECT NO.	15-145	
PROJECT NAME	Mainfreight Freezer, Christchurch	
INSTALLER	WARMNZ	
DATE	27/09/2016	

These design notes shall provide guidance on obviously conflicting parameters. Please read them carefully.

	Parameter	Design Notes
System Details	Heat Source	Confirm if the supply temperature of 22°C for the floor circuits in heating mode suits to your energy source. Refer to page 'Performance Overview'.
System Details	Pipe Diameter	Pipe size 20mm chosen due to the design parameters, which have taken into consideration the flow and pressure loss of the system.
System Details	Anti Freeze	The calculation is based on a ratio of 30% anti-freeze in water. It has been assumed the anti- freeze will be Ethylene Glycol with corrosion inhibitor.
System Details	Anti Freeze	When selecting anti-freeze make sure it includes corrosion inhibitors and is suitable for all metal materials used in the installation, ie. brass, steel etc. Anti-freeze with corrosion inhibitors must be maintained regularly in accordance with manufacturer's instruction.
Manifold Details	Flow Temperature Control Components	Assure the required design supply temperature and flow rate can be provided directly from the heat source as no Flow Temperature Mixer Unit was specified.
Manifold Details	Flow Temperature Control Components	A Flow Temperature Mixer Unit is recommended. Please advise if the REHAU Mixer Unit is required as this has not been included in the Bill of Materials.
Manifold Details	Flow Temperature Control Components	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Floor Structure	Floor Structure	The floor structure has been assumed since there was insufficient information provided. Refer to section "Floor Structure" on page "Performance Overview" for details.
Control Details	Zone Control	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Performance Details	Required Output	The target output (heat load/cooling load) reflects the information provided by the requesting party. REHAU has not verified if it covers the load requirements of the building or of particular areas of the building. We recommend to verify the load requirements by conducting a heat load / cooling load calculation.

REHAU HYDRONIC SYSTEM

PERFORMANCE OVERVIEW - PROPOSED FINAL*

L (mm)

PROJECT NO.	15-145
PROJECT NAME	Mainfreight Freezer, Christchurch
INSTALLER	WARMNZ
DATE	27/09/2016
DESIGN BY	REHAU Design Team

Freezer (R=4.9 m ² .K/V	/)
Floor layer:	<u>L (mm)</u>
Wear slab	150
Insulation 150mm	150
Concrete Cover	50
Pipe center	
Concrete Cover	75
Sand	2000

4 16 806.0

Floor layer

N/A

N/A

<u>L (mm)</u>

N/A Floor layer N/A

V.7.7

HYDRAULICS		_	PERFORMANCE SU	MMARY
Pipe type	RAUTHERM S 20		No. of zones	4
Heating Flow temp	22	°C	No. of circuits	16
Cooling Flow temp	NA	°C	Conditioned Area	806.

Room Parameters								Heating Performance						Cooling performance													
Room(s)	Zone	Area	Room Thermostat	Floor System	Floor type	Floor Covering	Pipe spacing	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Heat Output	Heat output up	Heat output down	Percent Covered	Total Slab Output	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Cooling Output	Cooling output up	Cooling output down	Percent Covered	Total Slab Output
		m²					mm	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W
Freezer	1	102.0	None	Freezer	Slab on ground	None	400	-25.0	5.0	6.0	5.5	-24	9	9	11	101	2096										
Chiller A	2	102.0	None	Freezer	Slab on ground	None	400	-25.0	5.0	6.0	5.5	-24	9	9	11	101	2096										
Chiller B	3	102.0	None	Freezer	Slab on ground	None	400	-25.0	5.0	6.0	5.5	-24	9	9	11	101	2096										
ELA	4	500.0	None	Freezer	Slab on ground	None	400	-21.0	5.0	6.0	25.6	-20	8	8	11	103	9851										
					1																						
					1																						
					1																						
	4	806.0	•		•							•					16138										

* This design and the associated data have been prepared in accordance with the information provided by the requesting party. Please check if the parameter suits to your project. For minimum insulation requirements for the floor refer to the Building Code of Australia / New Zealand Building Code. When considering to use Tacker sheet, please check that the thermal and physical properties (eg. compressive stress) suit to your project. The advice is based on experience and the most recent know how but does not represent any obligation on our part.

Explanatory Notes:

PIPE SPACING Proposed pipe laying distance. Laying the pipes in a different spacing will influence the performance of the system. TEMPERATURE ABOVE/INSIDE Target temperature for the conditioned area above the slab (typically "Room Temperature"). TEMPERATURE BELOW/OUTSIDE Temperature of the area below the slab (ie. ground temperature or room below). ΔT FLOW/RETURN Temperature difference between supply and return for the conditioned area. NO. OF CIRCUITS Number of circuits required to cover the conditioned area. FLOOR SURFACE TEMPERATURE Surface temperature of the finished floor.

TARGET HEAT/COOLING OUTPUT HEAT/COOLING OUTPUT UP HEAT/COOLING OUTPUT DOWN

PERCENT COVERED TOTAL SLAB OUTPUT Target Heat/Cooling output as per the information provided by the requesting party. Heating/Cooling performance upwards in Watts per square meter. Heating/Cooling performance downwards in Watts per square meter (in slab-on-ground constructions = "Downward losses") Coverage of Target Heating/Cooling output in % Output (upwards + downwards) of the conditioned slab in Watts.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

	A	В	С	D	E	F	G	Н	I	J	к	L	М	Ν	0
1	Project Nº:	15-145	1	1		1	Project Name:	Mainfreight Freeze	r, Christchu	ırch	Installer:	WARMNZ			
2	Manifol	d M1 -	Ground	Floor				· .						Date	27/09/2016
3	Circ	uit Fluid Pro	perties		C	ircuit Pipe D	Details	Flow and Return Pipe				RESULTS	- Manifold		V.7.7
4	Heating	Temperature	22.0	°C	Manifold	Stainless I	HKV-D	Length	n 76 m			ber of circuits:	10		
5	Cooling	Temperature	NA	°C	Pipe	Pipe RAUTHERM S 20		Flow/Ret pipe	RAUTIT	AN Pink 40	Total Ler	ngth of circuits:	1221	m	
6	Mea	in water temp	19.0	°C	Mixing Unit Details			Flow rate	1503 l/	'n	_	Total Flow:	1503	l/h	
7	% Eti	nyiene Giycol	30.0	% Do o	Type None				0.6 n	n/s	Pressure Loss	s @ Manifold:	11.6	kPa kDa	
8		VISCOSILY 0.0024 Pa.S			Supply t	Supply t 22.0 °C			22.0 K	Pa	rotal pressure		33.0	кра	
9								%Fitting losses	20% (
10	INPUI-Manife	510	Circuit						Head I		0 L I 3 - FIO		Balancing		
12	Noto: ** propuro a	Iron when values	length	FI	ow			Pine	Flow and	Retun Valves	Total Loss	Т	urn direction		
13	fully ope	en!	Σ	v	v	Velocity	Head Loss		$\Delta p_{Flow/Retu}$	urn valves, full open	$\Delta \text{Dtotal}^{**}$	Clo	osed => Op	en	
14	Circuit Name	No.	m	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv .	Turns	
15										-			m³/h		
16	Circuit	M1 1	124	2.5	0.042	0.211	79	9 808	1	699	11 507	1 820	1.13	2	
17	Circuit	M1 2	125	2.6	0.043	0.212	80	9,915	1	712	11 628	1 712	1.17	2 1/4	
18	Circuit	M1.3	122	2.5	0.042	0.207	76	9.304	1	.634	10.938	2.324	0.98	1 2/4	
19	Circuit	M1.4	120	2.5	0.041	0.205	75	8.997	1	.594	10,591	2.630	0.91	1 1/4	
20	Circuit	M1.5	119	2.4	0.041	0.202	73	8,737	1	,559	10,296	2,891	0.86	1	
21	Circuit	M1.6	120	2.5	0.041	0.203	74	8,837	1	,573	10,409	2,791	0.88	1	
22	Circuit	M1.7	121	2.5	0.041	0.205	75	9,079	1	,604	10,683	2,549	0.93	1 1/4	
23	Circuit	M1.8	122	2.5	0.042	0.208	77	9,387	1	,644	11,031	2,241	1.00	1 2/4	
24	Circuit	M1.9	124	2.5	0.042	0.211	79	9,744	1	,690	11,435	1,883	1.11	2	
25	Circuit	M1.10	125	2.6	0.043	0.212	80	9,915	1	,712	11,628	1,712	1.17	2 1/4	
26	Circuit	M1.11													
27	Circuit	M1.12													
28	Circuit	M1.13													
29	Circuit	M1.14													
30	Circuit	M1.15													
31	Circuit	M1.16													
32	Circuit	M1.17													
33															
				25.0										CT ANZ /	svd536

This design and the associated date have been prepared in accordance with the information proveded be the requesting party.

The advice is based on experience and the most recent know but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

	А	В	С	D	E	F	G	Н	I	J	к	L	М	Ν	0
1	Project Nº:	15-145					Project Name:	Mainfreight Freezer	r, Christo	hurch	Installer:	WARMNZ			
2	Manifol	d M2 -	Ground	Floor										Date	27/09/2016
3	Circ	uit Fluid Pro	perties		С	ircuit Pipe D	etails	Flow and Return Pipe				RESULTS	Manifold	-	V.7.7
4	Heating	Temperature	22.0	°C	Manifold	Stainless H	IKV-D	Length	n 24 m		Number of circuits		2		
5	Cooling	Temperature	NA	°C	Pipe	Pipe RAUTHERM S 20		Flow/Ret pipe	RAUT	ITAN Pink 25	Total Length of circuits		248	m	
6	Mea	in water temp	19.0	°C	M	ixing Unit D	etails	Flow rate	318	l/h		Total Flow:	318	l/h	
7	% Eti	hylene Glycol	30.0	%	Туре	None		v	0.3	m/s	Pressure Loss	s @ Manifold:	12.9	kPa	
8		viscosity	0.0024	Pa.s	Supply t	22.0	°C	ΔPf/r	4.6	kPa	Total pressur	e including F/L	17.5	kPa	
9								%Fitting losses	20%	(estimate)					
10	I N P U T - Manife	old		1						RES	ULTS-Flo	or Circuits			
11			Circuit						Hea	d Losses			Balancing		
12	<u>Note:</u> ** pressure d	lrop when valves	length	FI	ow	Valasitu		Pipe	Flow ar	nd Retun Valves	Total Loss		urn direction:		
13	fully ope	en!	Σ	V	V	velocity	Head Loss	Δ p pipe	∆pFlow/	Return valves, full open	∆ptotal^^		sea => Ope	n Turno	
14		INO.	m		1/5	m/s	Pa/m	Pa		Ра	Pa	Pa	 	Turns	
15	Circuit	M2 1	126	2.7	0.045	0.224	07	11.026		1 011	12 027	1 011	1 17	2 1/4	
16	Circuit	NO 0	120	2.1	0.045	0.224	07	0.051		1,911	11,937	1,911	0.00	2 1/4	
17	Circuit	IVIZ.Z	122	2.0	0.043	0.210	02	9,951		1,771	11,722	2,900	0.90	1 1/4	
18	Circuit	IVI2.3													
19	Circuit	M2.4													
20	Circuit	M2.5													
21	Circuit	M2.6		ļ											
22	Circuit	M2.7													
23	Circuit	M2.8													
24	Circuit	M2.9													
25	Circuit	M2.10													
26	Circuit	M2.11													
27	Circuit	M2.12													
28	Circuit	M2.13		1											
29	Circuit	M2.14													
30	Circuit	M2 15													
31	Circuit	M2 16													
32	Circuit	M2 17													
33	C.Out														
		1		5.3	1	1	1	1	1			1 1		CT ANZ	/ syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

The advice is based on experience and the most recent know how but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

Image: solution of the soluti	Date	0									
2 Manifold M3 - Ground Floor	Date										
	Sel-	27/09/2016									
Circuit Fluid Properties Circuit Pipe Details Flow and Return Pipe R E S U L T S - Man	R E S U L T S - Manifold										
4 Heating Temperature 22.0 °C Manifold Stainless HKV-D Length 10 m Number of circuits:	4										
5 Cooling Temperature NA °C Pipe RAUTHERM S 20 Flow/Ret pipe RAUTITAN Pink 25 Total Length of circuits: 5	519 m										
6 Mean water temp 19.0 °C Mixing Unit Details Flow rate 666 I/h Total Flow: 6	66 l/h										
7 % Ethylene Glycol 30.0 % Type None v 0.7 m/s Pressure Loss @ Manifold: 1	5.9 kPa										
ε viscosity 0.0024 Pa.s Supply t 22.0 °C ΔPf/r 6.8 kPa Total pressure including F/L 2	2.6 kPa										
9 %Fitting losses 20% (estimate)											
10 IN PUI - Manifold RESULTS-Floor Circuits											
11 Head Losses Balar	ncing										
12 <u>Note:</u> ** pressure drop when valves length Flow Valaeity Head Less Pipe Flow and Return Valves Total Loss Turn dir	rection:										
13 Tully open: 2 V V Velocity πedu LOSS ΔΔpripe ΔpFlow/Return valves, full open Δptotal ^{**} Closed =	=> Open										
14 Circuit Name INC. In Vinin I/S III/S Pa/III Pa Pa Pa Pa Pa Pa Pa	-3//-	-									
16 Circuit M3.1 126 2.7 0.045 0.224 87 11,026 1,911 12,937 4,840 0	.74 3/4	-									
17 Circuit M3.2 122 2.6 0.043 0.216 82 9,951 1,771 11,722 5,915 0	.64 2/4										
18 Circuit M3.3 137 2.9 0.049 0.242 100 13,631 2,235 15,866 2,235 1	.17 2 1/4										
19 Circuit M3.4 134 2.9 0.048 0.238 97 12,967 2,154 15,121 2,900 1	.01 1 2/4										
20 Circuit M3.5											
21 Circuit M3.6											
22 Circuit M3.7											
23 Circuit M3.8											
24 Circuit M3.9											
25 Circuit M3.10											
26 Circuit M3 11											
23 Olicult M3.15											
30 Oricuit M0.10 M2.16											

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

The advice is based on experience and the most recent know how but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM

BILL OF MATERIAL - PROPOSED FINAL*

RAUTHERM S 20

To be clarified

16.1 kW

None

0 kW

V.7.7

 PROJECT NO.
 15-145
 Date
 27/09/2016

 PROJECT NAME
 Mainfreight Freezer, Christchurch
 Department
 27/09/2016

 INSTALLER
 WARMNZ
 Construction

 PROJECT OVERVIEW:
 Commercial
 System
 in-slab

Covered Floor Area	806 m²
Number of Zones	4
Number of manifolds	3
Number of circuits	16
Manifold type	Stainless HKV-D
Flow Temp. system	None

Pipe Heat Source

Total output Heating

Total output Cooling

Cooling Source

Further details see page "Performance Overview"

Category	Sub Category	Product Description	Availability	Article Number	Units	Est. Qty	Order Quantity
Floor Systems	RAUTITAN Pink	Pipe 25 x 3.5 mm - 6m straight	Standard	136062-006	m	34	36
Floor Systems	RAUTITAN Pink	Pipe 40 x 5.5 mm - 6m straight	Standard	136082-006	m	76	78
Floor Systems	RAUTHERM S	Pipe 20 x 2.0 mm - 400m coil	Standard	139800-400	m	1988	2400
Floor Systems	Stainless Manifold	Stainless Steel Manifold 2-port	Standard	208021-003	ea	1	1
Floor Systems	Stainless Manifold	Stainless Steel Manifold 4-port	Standard	208041-003	ea	1	1
Floor Systems	Stainless Manifold	Stainless Steel Manifold 10-port	Standard	208101-003	ea	1	1
Floor Systems	Stainless Manifold	Ball valve set 1"	Standard	208122-001	ea	3	3
Floor Systems	Manifold	Manifold Stand	Lead Time	216636-001	ea	3	3
Accessories	Manifold	Manifold Union for RAUTHERM S 20 x 2.0 mm	Lead Time	250617-001	ea	34	34
Accessories	Conduit	Conduit for RAUTITAN Pipe 20 mm (yellow)	Standard	180262-050	m	64	100
Accessories	RAUTITAN Fittings	Polymer Profile Bend Bkt 90 Deg 20 mm	Standard	297892-001	ea	33	33
Accessories	RAUTHERM S Fittings	No. 1 Straight Coupler 20 x 2.0 mm	Lead Time	250317-002	ea	6	6
Accessories	RAUTHERM S Fittings	Compression Sleeve 20 x 2.0 mm	Lead Time	250307-002	ea	12	12

Further Hydronic Components that may be required*:

- Suitably sized energy source(s)

- Suitably sized supply and return pipe work from the energy source to the manifold(s)
- An external pump (check the internal energy source pump curve)

- Suitably sized expansion vessel

- Safety Valves and Isolating Valves

- Air Bleeding Valve

- Other

The above are only suggestions from REHAU and a proper design considering the whole hydraulic system is required to determine if the above material estimation will be sufficient to condition the space adequately.

Cotogony	Sub Category	Product Description	Availability	Article	Unite	Est.	Order
Calegory	Sub Calegoly	Froduct Description	Availability	Number	Units	Qty	Quantity

*This is an estimate only based on the information provided to us at the time of completing this proposal. The estimate assumes the building has sufficient thermal insulation to meet local building requirements, e.g. NZBC, BCA or BASIX, prior to the installation of the REHAU components. REHAU does not accept any liability for omissions of hydronic components, installation tools and accessories, or for any discrepancy in terms of quantity of materials (overestimate or underestimate) compared to the actual requirements. This material list terminates at the UFH manifold and may not include all components required to condition the space adequately. The amount and sizes for each article may change during the final design.

Our verbal and written advice relating to technical applications and this quote is based on experience and is to the best of our knowledge correct but is given without obligation.

