

Department Construction Name REHAU Web Design New Zealand Phone 9272 2264 Email FHDesign.ANZ@rehau.com Date 10/10/2018

Plumbcraft Todd Bowmast 5 Waimana Rd Takanini 2244

REHAU Hydronic System detailed design - Heating

Project: 18-103 Service foods freezer

Dear Todd,

We have pleasure in submitting our detailed design documents for your above mentioned project. This design and the associated data have been prepared according to the information, diagrams and/or drawings provided. Please check and confirm all parameters and results prior to using them.

By utilising our design service and the results you recognise the current REHAU Terms and Conditions of Sale, which are available on request or at www.rehau.com/LZB.

In case this design requires amendments, please send an email with all required changes to FHDesign.ANZ@rehau.com

Additional charges may apply for design changes or required corrections not caused by us.

We thank you for your interest in the REHAU Hydronic System detailed design and look forward to the application of our products.

Please do not hesitate to contact us if you require any further clarification or assistance.

Kind regards

REHAU Web Design New Zealand REHAU Pty Ltd

Attachments:

Performance overview (proposed final) Hydraulic Balancing Data for each manifold Bill Of Material (proposed final) Circuit layout as CAD drawing

REHAU HYDRONIC SYSTEM

DESIGN NOTES

		V.7.9
PROJECT NO.	_18-103	
PROJECT NAME	Service foods freezer	
INSTALLER	Plumbcraft	
DATE	10/10/2018	

These design notes shall provide guidance on obviously conflicting parameters. Please read them carefully.

	Parameter	Design Notes
System Details	Heat Source	Confirm if the supply temperature of 20°C for the floor circuits in heating mode suits to your energy source. Refer to page 'Performance Overview'.
System Details	Pipe Diameter	Pipe size 20mm chosen due to the design parameters, which have taken into consideration the flow and pressure loss of the system.
System Details	Anti Freeze	The calculation is based on a ratio of 30% anti-freeze in water. It has been assumed the anti- freeze will be Propylene Glycol with corrosion inhibitor.
System Details	Anti Freeze	When selecting anti-freeze make sure it includes corrosion inhibitors and is suitable for all metal materials used in the installation, ie. brass, steel etc. Anti-freeze with corrosion inhibitors must be maintained regularly in accordance with manufacturer's instruction.
Manifold Details	Flow Temperature Control Components	Assure the required design supply temperature and flow rate can be provided directly from the heat source as no Flow Temperature Mixer Unit was specified.
Manifold Details	Flow Temperature Control Components	A Flow Temperature Mixer Unit is recommended. Please advise if the REHAU Mixer Unit is required as this has not been included in the Bill of Materials.
Manifold Details	Flow Temperature Control Components	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Floor Structure	Floor Structure	The floor structure has been assumed since there was insufficient information provided. Refer to section "Floor Structure" on page "Performance Overview" for details.
Control Details	Zone Control	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Performance Details	Required Output	The target output (heat load/cooling load) reflects the information provided by the requesting party. REHAU has not verified if it covers the load requirements of the building or of particular areas of the building. We recommend to verify the load requirements by conducting a heat load / cooling load calculation.

REHAU HYDRONIC SYSTEM

PERFORMANCE OVERVIEW - PROPOSED FINAL*

L (mm)

PROJECT NO.	18-103
PROJECT NAME	Service foods freezer
INSTALLER	Plumbcraft
DATE	10/10/2018
DESIGN BY	REHAU Design Team

36 2406.0

Ground Floor (R=6.51	m².K/W)
Floor layer:	<u>L (mm)</u>
Wear slab	200
Insulation	200
Concrete Cover	38
Pipe center	
Concrete Cover	87
Clay	2000

Floor layer

N/A

N/A

L (mm)

Floor layer

N/A

N/A

V.7.9

HYDRAULICS		_	PERFORMANCE SL	JMMARY
Pipe type	RAUTHERM S 20		No. of zones	2
Heating Flow temp	20	°C	No. of circuits	36
Cooling Flow temp	NA	°C	Conditioned Area	2406

			Room Parame	eters								Heating	Perform	nance								Cooling	perforn	nance			
Room(s)	Zone	Area	Room Thermostat	Floor System	Floor type	Floor Covering	Pipe spacing	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Heat Output	Heat output up	Heat output down	Percent Covered	Total Slab Output	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Cooling Output	Cooling output up	Cooling output down	Percent Covered	Total Slab Output
		m²					mm	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W
Freezer 1	1	1807.0	None	Ground Floor	Slab on ground	None	400	-22.0		6.0	78.7	-21	6	6	11	107	31110										
Chiller	1	539.0	None	Ground Floor	Slab on ground	None	400	-22.0		5.0	28.8	-21	6	6	11	108	9494										
Blast	2	60.0	None	Ground Floor	Slab on ground	None	400	-30.0		4.8	3.6	-29	8	8	11	97	1142										
								1										I									
																		l									
																		ļ									
																		l									
	2	2406.0						4					41746	46													

* This design and the associated data have been prepared in accordance with the information provided by the requesting party. Please check if the parameter suits to your project. For minimum insulation requirements for the floor refer to the Building Code of Australia / New Zealand Building Code. When considering to use Tacker sheet, please check that the thermal and physical properties (eg. compressive stress) suit to your project. The advice is based on experience and the most recent know how but does not represent any obligation on our part.

Explanatory Notes:

PIPE SPACING Proposed pipe laying distance. Laying the pipes in a different spacing will influence the performance of the system. TEMPERATURE ABOVE/INSIDE Target temperature for the conditioned area above the slab (typically "Room Temperature"). TEMPERATURE BELOW/OUTSIDE Temperature of the area below the slab (ie. ground temperature or room below). ΔT FLOW/RETURN Temperature difference between supply and return for the conditioned area. NO. OF CIRCUITS Number of circuits required to cover the conditioned area. FLOOR SURFACE TEMPERATURE Surface temperature of the finished floor.

TARGET HEAT/COOLING OUTPUT HEAT/COOLING OUTPUT UP HEAT/COOLING OUTPUT DOWN

PERCENT COVERED TOTAL SLAB OUTPUT Target Heat/Cooling output as per the information provided by the requesting party. Heating/Cooling performance upwards in Watts per square meter. Heating/Cooling performance downwards in Watts per square meter (in slab-on-ground constructions = "Downward losses") Coverage of Target Heating/Cooling output in % Output (upwards + downwards) of the conditioned slab in Watts.

	А	В	С	D	E	F	G	н	1	J	к	L	М	Ν	0
1	Project Nº:	18-103					Project Name:	Service foods freez	er	1	Installer:	Plumbcraft			
2	Manifol	d M1 -	Ground I	Floor			-							Date	10/10/2018
3	Circ	uit Fluid Pro	perties		C	ircuit Pipe D	etails	Flow and	l Return	Pipe		RESULTS-	Manifold		V.7.9
4	Heating	Temperature	20.0	°C	Manifold	Stainless H	HKV-D	Length	11	m	Num	ber of circuits:	6		
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	M S 20	Flow/Ret pipe	RAUT	ITAN Pink 32	Total Ler	ngth of circuits:	1076	m	
6	Mea	in water temp	17.1	°C	M	lixing Unit D	etails	Flow rate	1125	l/h		Total Flow:	1125	l/h	
7	% Proj	pylene Glycol	30.0	%	Туре	None		V	0.7	m/s	Pressure Loss	@ Manifold:	27.0	kPa	
8		viscosity	0.0033	Pa.s	Supply t	20.0	ч <u>С</u>	ΔPt/r	5.9	kPa	l otal pressure	e including F/R	33.0	kPa	
9								%Fitting losses	20%	(estimate)					
10	INPUT - Manifo	old	O'muit							RES	ULTS-Flo	or Circuits	Deleveire		
11			CIrcuit	-	~~~			Dine	Head	LOSSES	Total Lago	I	Balancing		
12	<u>Note:</u> ** pressure d	lrop when valves	rengin		0w	Velocity	Head Loss	April				Clo	an arection.	'n	
13	Circuit Namo	No	 	l/min	V 1/0	m/o	Bo/m			Do		Pa		Turpe	
14		INO.	111		1/5	111/5	F d/III	га		га	га	га	r\v	Turns	
15	0, 1		407	0.0	0.054	0.070	400	04.040		0.704	07.004	0.704	m [*] /n	0.4/4	
16	Circuit	M1.1	187	3.3	0.054	0.270	130	24,310	2,721		27,031	2,721	1.19	2 1/4	
17	Circuit	M1.2	187	3.2	0.054	0.269	129	24,065		2,700	26,765 2,966		1.13	2	
18	Circuit	M1.3	178	3.1	0.052	0.257	119	21,214		2,460	23,674	5,816	0.77	3/4	
19	Circuit	M1.4	177	3.1	0.051	0.256	118	20,894		2,432	23,326	6,137	0.75	3/4	
20	Circuit	M1.5	173	3.0	0.050	0.250	114	19,765		2,334	22,100	7,265	0.67	2/4	
21	Circuit	M1.6	174	3.0	0.051	0.251	115	19,951		2,350	22,301	7,080	0.68	3/4	
22	Circuit	M1.7													
23	Circuit	M1.8													
24	Circuit	M1.9													
25	Circuit	M1.10													
26	Circuit	M1.11													
27	Circuit	M1.12													
28	Circuit	M1.13													
29	Circuit	M1.14													
30	Circuit	M1.15													
31	Circuit	M1.16													
32	Circuit	M1.17													
33															
				18.7		•						· · · · · ·		CT ANZ	syd536

This design and the associated date have been prepared in accordance with the information proveded be the requesting party.

	А	В	С	D	E	F	G	Н	1	J	к	L	М	N	0
1	Project Nº:	18-103	1			1	Project Name:	Service foods freez	er		Installer:	Plumbcraft		<u> </u>	
2	Manifol	d M2 -	Ground	Floor				•						Date	10/10/2018
3	Circ	uit Fluid Pro	perties		С	ircuit Pipe D	Details	Flow and	l Return	Pipe		RESULTS-	Manifold		V.7.9
4	Heating	Temperature	20.0	°C	Manifold	Stainless H	HKV-D	Length	3.5	m	Nun	nber of circuits:	6	-	
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUT	ITAN Pink 32	Total Lei	ngth of circuits:	1076	m	
6	Mea	in water temp	17.1	°C	M	ixing Unit D	Details	Flow rate	1124	l/h		Total Flow:	1124	l/h	
7	% Proj	pylene Glycol	30.0	%	Туре	None		v	0.7	m/s	Pressure Los	s @ Manifold:	26.1	kPa	
8		viscosity	0.0033	Pa.s	Supply t	20.0	°C	ΔPf/r	1.9	kPa	Total pressur	re including F/L	28.0	kPa	
9								%Fitting losses	20%	(estimate)					
10	I N P U T - Manifo	old		1		1	1			RES	ULTS-Flo	or Circuits	<u></u>		
11	-		Circuit	_				D .	Head	dLosses			Balancing		
12	<u>Note:</u> ** pressure d	lrop when valves	length	F.	low	Volocity		Pipe	Flow an	d Retun Valves	I otal Loss		urn direction:	-	
13	fully ope	ni No	<u> </u>	V V/min	V	velocity			Δp Flow/F	Return valves, full open			/sea => Ope	n Turpo	
14		INO.			1/5	111/5	Fa/III	га		Га	га	Fa	m ³ /h	Turns	
16	Circuit	M2 1	185	3.2	0.054	0.267	127	23 442		2 648	26.091	2 648	1 10	2 1/4	
10	Circuit	M2 2	18/	3.2	0.053	0.207	126	23,442	2,648		25,831	2,040	1.13	2 1/4	
17	Circuit	M2.2	175	2.1	0.055	0.200	116	20,200		2,020	20,001	5 725	0.77	2/4	
18	Circuit	1012.3	175	3.1	0.051	0.255	110	20,330		2,300	22,742	5,735	0.77	3/4	
19	Circuit	M2.4	1/5	3.0	0.051	0.252	115	20,168		2,369	22,538	5,923	0.75	3/4	
20	Circuit	M2.5	1/8	3.1	0.052	0.257	119	21,279		2,465	23,744	4,812	0.85	1	
21	Circuit	M2.6	179	3.1	0.052	0.258	120	21,538		2,488	24,025	4,553	0.88	1	
22	Circuit	M2.7													
23	Circuit	M2.8		ļ											
24	Circuit	M2.9													
25	Circuit	M2.10													
26	Circuit	M2.11													
27	Circuit	M2.12													
28	Circuit	M2.13													
29	Circuit M2.14														
30	30 Circuit M2.15														
31	Circuit	M2.16													
32	Circuit	M2.17													
33															
	ļ	1		18.7	,	1	1	1			1	I		CT ANZ	/ syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

	Α	В	C	D	F	F	G	н	1	.1	к	1	м	Ν	0
1	Project Nº:	18-103	Ū	5	-		Project Name:	Service foods freez	er	Ū	Installer:	Plumbcraft			0
2	Manifol	d M3 -	Ground	Floor					-					Date	10/10/2018
3	Circ	cuit Fluid Pro	perties		С	ircuit Pipe [Details	Flow and	l Return	Pipe		RESULTS	- Manifold		V.7.9
4	Heating	Temperature	20.0	°C	Manifold	Stainless I	HKV-D	Length	8.5	i m	Nun	nber of circuits:	6		
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUT	ITAN Pink 32	Total Le	ngth of circuits:	1076	m	
6	Mea	an water temp	17.1	°C	N	lixing Unit D	Details	Flow rate	1124	l/h		Total Flow:	1124	l/h	
7	% Pro	pylene Glycol	30.0	%	Туре	None		v	0.7	m/s	Pressure Los	s @ Manifold:	25.2	kPa	
8	-	viscosity	0.0033	Pa.s	Supply t	20.0	°C	ΔPf/r	4.6	kPa	Total pressur	re including F/L	29.8	kPa	
9								%Fitting losses	20%	(estimate)					
10	INPUT - Manif	old	0:				1			RES	SULTS-Flo	or Circuits	Delensing		
11			Circuit		0.44			Dino		d Losses	Total Laga	T			
12	<u>Note:</u> ^^ pressure of fully on	drop when valves	Σ		UW V	Velocity	Head Loss				Antotal**		nsed => On	an	
13	Circuit Name	No	 	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv	Turns	
15								. u					m³/h		
16	Circuit	M3 1	182	3.2	0.053	0.262	123	22 427		2 563	24 990	2 781	1 14	2	
10	Circuit	M3 2	181	3.2	0.053	0.202	123	22,427		2,505	24,330	3 01/	1.14	1 3/4	
17	Circuit	M2 2	175	2.0	0.055	0.201	115	22,195		2,545	24,730	5,014	0.01	1 1	
18	Circuit	1013.3	175	3.0	0.051	0.252	115	20,100		2,304	22,470	5,102	0.01	1	
19	Circuit	1013.4	1/5	3.0	0.051	0.252	115	20,100		2,304	22,470	5,102	0.01	1	
20	Circuit	M3.5	182	3.2	0.053	0.262	123	22,394		2,560	24,954	2,814	1.13	2	
21	Circuit	M3.6	182	3.2	0.053	0.263	124	22,628		2,580	25,208	2,580	1.19	2 1/4	
22	Circuit	M3.7													
23	Circuit	M3.8													
24	Circuit	M3.9													
25	Circuit	M3.10													
26	Circuit	M3.11													
27	Circuit	M3.12													
28	Circuit	M3.13													
29	Circuit	M3.14													
30	Circuit	M3.15													
31	Circuit	M3.16													
32	Circuit	M3.17													
33		1					1								
	1	1		18.7	,	1	1	1			1	1	1	CT ANZ	/ syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

	A	В	С	D	E	F	G	Н	I	J	к	L	М	Ν	0
1	Project Nº:	18-103		1			Project Name:	Service foods freez	er		Installer:	Plumbcraft	1		
2	Manifol	d M4 -	Ground	Floor				•				•		Date	10/10/2018
3	Cire	cuit Fluid Pro	perties		С	ircuit Pipe D	Details	Flow and	l Return	Pipe		RESULTS	- Manifold		V.7.9
4	Heating	Temperature	20.0	°C	Manifold	Stainless I	HKV-D	Length	2.5	m	Num	ber of circuits:	7	_	
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUT	ITAN Pink 32	Total Ler	ngth of circuits:	1263	m	
6	Mea	an water temp	17.1	°C	N	lixing Unit D	etails	Flow rate	1320	l/h		Total Flow:	1320	l/h	
7	% Pro	pylene Glycol	30.0	% D	Type	None	00	V A Df/r	0.9	m/s	Pressure Loss	s @ Manifold:	28.5	kPa	
8	-	viscosity	0.0033	Pa.s	Supply t	20.0	°C	ΔPT/r % Eitting loopoo	1.8	KPa (optimate)	i otal pressur	e including F/L	30.3	кРа	
9	INPILT - Manif	old						%Fitting losses	20%			or Circuite			
10		oiu	Circuit						Head	1Losses			Balancing		
12	Note: ** pressure (dron when values	length	FI	ow			Pipe	Flow an	d Retun Valves	Total Loss	Т	urn direction	:	
13	fully op	en!	Σ	v	v	Velocity	Head Loss	Δppipe	Δp Flow/F	Return valves, full open	Δp_{total}^{**}	Clo	osed => Ope	en	
14	Circuit Name	No.	m	l/min	l/s	m/s	Pa/m	Pa		Ра	Pa	Pa	Kv	Turns	
15													m³/h		
16	Circuit	M4.1	173	3.0	0.050	0.250	114	19,642		2,324	21,966	8,857	0.61	2/4	
17	Circuit	M4.2	172	3.0	0.050	0.249	113	19,459		2,307	21,766	9,041	0.60	2/4	
18	Circuit	M4.3	176	3.1	0.051	0.254	117	20,482		2,397	22,878	8,018	0.65	2/4	
19	Circuit	M4.4	176	3.1	0.051	0.255	117	20,703		2,416	23,119	7,796	0.66	2/4	
20	Circuit	M4.5	186	3.2	0.054	0.269	129	23,995		2,695	26,690	4,504	0.92	1 1/4	
21	Circuit	M4.6	188	3.3	0.055	0.272	131	24,663		2,750	27,412	3,837	1.00	1 2/4	
22	Circuit	M4.7	191	3.3	0.055	0.276	134	25,667		2,832	28,499	2,832	1.19	2 1/4	
23	Circuit	M4.8													
24	Circuit	M4.9													
25	Circuit	M4.10							İ						
26	Circuit	M4.11													
27	Circuit	M4.12													
28	Circuit	M4.13													
29	Circuit	M4.14													
30	Circuit	M4.15													
31	Circuit	M4.16													-
32	Circuit	M4.17													
33															
				22.0										CT ANZ /	syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

<u> </u>	A	в	с	D	Е	F	G	н	1	J	к	L	М	N	0
1	Project Nº:	18-103					Project Name:	Service foods freez	er		Installer:	Plumbcraft			
2	Manifol	d M5 -	Ground	Floor							I			Date	10/10/2018
3	Circ	cuit Fluid Pro	perties		C	ircuit Pipe I	Details	Flow and	d Return	Pipe		RESULTS	- Manifold		V.7.9
4	Heating	Temperature	20.0	°C	Manifold	Stainless I	HKV-D	Length	6.5	5 m	Nun	nber of circuits:	1		
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUT	ITAN Pink 25	Total Le	ngth of circuits:	128	m	
6	Mea	an water temp	17.1	°C	N	lixing Unit E	Details	Flow rate	185	l/h		Total Flow:	185	l/h	
7	% Pro	pylene Glycol	30.0	%	Туре	None		V	0.2	m/s	Pressure Los	s @ Manifold:	17.5	kPa	
8	-	viscosity	0.0033	Pa.s	Supply t	20.0	°C	ΔPt/r	0.5	kPa	I otal pressui	re including F/L	18.0	kPa	
9	INDUT Monif							%Fitting losses	20%	(estimate)		or Circuito			
10		oiu	Circuit						Нор		0 L I 3 - FI0		Balancing		
11	Noto: **		length	F	low			Pine	Flow ar	d Return Valves	Total Loss	т	urn direction		
12	<u>tully on</u>	arop when valves en!	Σ	v	v	Velocity	Head Loss			Return valves, full open		Cic	osed => Op	en .	
14	Circuit Name	No.	 	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv	Turns	
15													m³/h		
16	Circuit	M5.1	128	3.1	0.051	0.255	118	15.085		2.428	17.513	2.428	1.19	2 1/4	
17	Circuit	M5.2								_,	,	_,			
18	Circuit	M5.3													
19	Circuit	M5.4													
20	Circuit	M5.5													
21	Circuit	M5.6													
22	Circuit	M5.7		1											
23	Circuit	M5.8		1											
24	Circuit	M5.9													
25	Circuit	M5.10		1											
26	Circuit	M5.11		1											
27	Circuit	M5.12													
28	Circuit	M5.13													
29	Circuit	M5.14													
30	Circuit	M5.15													
31	Circuit	M5.16													
32	Circuit	M5.17													
33															
				3.1										CT ANZ	syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party. The advice is based on experience and the most recent know how but does not represent any obligation on our part.

www.rehau.com

	A	В	С	D	E	F	G	н	l J	J	к	L	М	N	0
1	Project Nº:	18-103					Project Name:	Service foods freez	er		Installer:	Plumbcraft			
2	Manifol	d M6 -	Ground	Floor										Date	10/10/2018
3	Circ	cuit Fluid Pro	perties		С	ircuit Pipe D	Details	Flow and	l Return Pipe			RESULTS	Manifold		V.7.9
4	Heating	Temperature	20.0	°C	Manifold	IM 32 S		Length	8 m		Num	ber of circuits:	10		
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUTITAN Pi	ink 40	Total Ler	ngth of circuits:	1336	m	
6	Mea	an water temp	17.1	°C	M	lixing Unit D	letails	Flow rate	1714 l/h			Total Flow:	1714	l/h	
7	% Pro	pylene Glycol	30.0	%	Туре	None		v	0.7 m/s	F	Pressure Loss	@ Manifold:	20.1	kPa	
8	-	viscosity	0.0033	Pa.s	Supply t	20.0	°C	ΔPf/r	3.1 kPa	-	Total pressure	e including F/L	23.2	kPa	
9								%Fitting losses	20% (estima	ate)					
10	INPUT - Manif	old					1			RESI	ULTS-Floo	or Circuits			
11			Circuit	_					Head Losses	S			Balancing		
12	<u>Note:</u> ** pressure o	drop when valves	length	FI	.ow	Valasitu		Pipe	Flow and Retun	Valves	I otal Loss	TI	urn direction	:	
13	fully ope	en!	Σ	V	V	velocity	Head Loss	Δppipe	ΔpFlow/Return valves	s, full open	∆ptotal**	Da	IZ.	Turree	
14	Circuit Name	INO.	m	i/min	I/S	m/s	Pa/m	Ра	Ра		Ра	Ра	KV	Turns	
15													m³/h		
16	Circuit	M6.1	144	3.1	0.051	0.256	118	17,093	3,012		20,105	3,012	1.07		
17	Circuit	M6.2	144	3.1	0.051	0.255	117	16,870	2,983		19,853	3,235	1.03		
18	Circuit	M6.3	135	2.9	0.048	0.239	105	14,165	2,621		16,786	5,940	0.71		
19	Circuit	M6.4	134	2.9	0.048	0.238	104	13,967	2,594		16,561	6,138	0.69		
20	Circuit	M6.5	126	2.7	0.045	0.223	94	11,827	2,294		14,121	8,278	0.56		
21	Circuit	M6.6	125	2.7	0.045	0.222	93	11,576	2,257		13,833	8,530	0.55		
22	Circuit	M6.7	127	2.7	0.045	0.225	95	12,083	2,330		14,413	8,023	0.58		
23	Circuit	M6.8	128	2.7	0.045	0.226	96	12,212	2,349		14,560	7,894	0.58		
24	Circuit	M6.9	136	2.9	0.049	0.242	107	14.653	2.688		17.341	5.452	0.75		
25	Circuit	M6.10	137	2.9	0.049	0.243	108	14.828	2.712		17.540	5.277	0.77		
26	Circuit	M6.11						,	,				-		
27	Circuit	M6 12													
28	Circuit	M6.13			<u> </u>										
29	Circuit	M6.14			<u> </u>										
30	Circuit	M6.15													
31	Circuit	M6.16			1										
32	Circuit	M6.17			1										
33					1										
	28.6													CT ANZ /	/ syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

REHAU HYDRONIC SYSTEM

BILL OF MATERIAL - PROPOSED FINAL*

V.7.9

PROJECT NO.	18-103		Date	10/10/2018
PROJECT NAME	Service foods freeze	er	Department	Construction
INSTALLER	Plumbcraft			
PROJECT OVE	RVIEW:			
Project Type		Commercial		
System		in-slab		
Pipe		RAUTHERM S 20		
Heat Source		Condensing boiler		
Total output Heating		41.7 kW		
Cooling Source		None		
Total output Cooling		0 kW		
Covered Floor Area		2406 m ²		
Number of Zones	;	2		
Number of manife	olds	6		
Number of circuit	ts	36		
Manifold type		Stainless HKV-D	Industrial Manifold IM 32 S	5
Flow Temp. syste	em	None		

Further details see page "Performance Overview"

Category	Sub Category	Product Description	Availability	Article Number	Units	Est. Qty	Order Quantity
Floor Systems	RAUTHERM S	Pipe 20 x 2.0 mm - 400m coil	Standard	139800-400	m	5954	6400
Floor Systems	Stainless Manifold	Stainless Steel Manifold 2-port	Standard	208021-003	ea	1	1
Floor Systems	Stainless Manifold	Stainless Steel Manifold 6-port	Standard	208061-003	ea	3	3
Floor Systems	Stainless Manifold	Stainless Steel Manifold 7-port	Standard	208071-003	ea	1	1
Floor Systems	Stainless Manifold	Ball valve set 1"	Standard	208122-001	ea	5	5
Floor Systems	Industrial Manifold	IM 32 S 1 1/4" 10-port	Lead Time	470090-001	ea	1	1
Floor Systems	Industrial Manifold	Ball valve set 1 1/4"	Standard	470001-001	ea	1	1
Controls	Zone Controls	Actuator 24V for polymer manifold / NEA control	Standard	240131 or 217916	ea	36	Optional
Controls	Zone Controls	Actuator 230V for polymer manifold / ADR-UFH control	Standard	240011 or 217915	ea	36	Optional
Accessories	Manifold	Manifold Union for RAUTHERM S 20 x 2.0 mm	Standard	250617-001	ea	72	72
Accessories	Conduit	Conduit for RAUTITAN Pipe 20 mm (yellow)	Standard	180262-050	m	144	150
Accessories	RAUTITAN Fittings	Polymer Profile Bend Bkt 90 Deg 20 mm	Standard	297892-001	ea	72	72
Accessories	RAUTHERM S Fittings	No. 1 Straight Coupler 20 x 2.0 mm	Standard	250317-002	ea	16	16
Accessories	RAUTHERM S Fittings	Compression Sleeve 20 x 2.0 mm	Standard	250307-002	ea	32	32

Further Hydronic Components that may be required*:

- Suitably sized energy source(s)

- Suitably sized supply and return pipe work from the energy source to the manifold(s)

- An external pump (check the internal energy source pump curve)
- Suitably sized expansion vessel
- Safety Valves and Isolating Valves
- Air Bleeding Valve

- Other

The above are only suggestions from REHAU and a proper design considering the whole hydraulic system is required to determine if the above material estimation will be sufficient to condition the space adequately.

Category	Sub Category	Product Description	Availability	Article	Units	Est.	Order
				Number		Qty	Quantity

*This is an estimate only based on the information provided to us at the time of completing this proposal. The estimate assumes the building has sufficient thermal insulation to meet local building requirements, e.g. NZBC, BCA or BASIX, prior to the installation of the REHAU components. REHAU does not accept any liability for omissions of hydronic components, installation tools and accessories, or for any discrepancy in terms of quantity of materials (overestimate or underestimate) compared to the actual requirements. This material list terminates at the UFH manifold and may not include all components required to condition the space adequately. The amount and sizes for each article may change during the final design.

Our verbal and written advice relating to technical applications and this quote is based on experience and is to the best of our knowledge correct but is given without obligation.

A1_2.4

