

Department Construction Name REHAU Web Design New Zealand Phone 9272 2264 Email FHDesign.ANZ@rehau.com Date 19/03/2019

Plumbcraft Todd Bowmast 5 Waimana Rd Takanini 2244

REHAU Hydronic System detailed design - Heating

Project: 19-101 46-48 Cryers Road

Dear Todd,

We have pleasure in submitting our detailed design documents for your above mentioned project. This design and the associated data have been prepared according to the information, diagrams and/or drawings provided. Please check and confirm all parameters and results prior to using them.

By utilising our design service and the results you recognise the current REHAU Terms and Conditions of Sale, which are available on request or at www.rehau.com/LZB.

In case this design requires amendments, please send an email with all required changes to FHDesign.ANZ@rehau.com

Additional charges may apply for design changes or required corrections not caused by us.

We thank you for your interest in the REHAU Hydronic System detailed design and look forward to the application of our products.

Please do not hesitate to contact us if you require any further clarification or assistance.

Kind regards

REHAU Web Design New Zealand REHAU Pty Ltd

Attachments:

Performance overview (proposed final) Hydraulic Balancing Data for each manifold Bill Of Material (proposed final) Circuit layout as CAD drawing

REHAU HYDRONIC SYSTEM

DESIGN NOTES

		V.8.1
PROJECT NO.	19-101	
PROJECT NAME	46-48 Cryers Road	
INSTALLER	Plumbcraft	
DATE	19/03/2019	

These design notes shall provide guidance on obviously conflicting parameters. Please read them carefully.

	Parameter	Design Notes
System Details	Pipe Diameter	Pipe size 20mm chosen due to the design parameters, which have taken into consideration the flow and pressure loss of the system.
System Details	Anti Freeze	The calculation is based on a ratio of 40% anti-freeze in water. It has been assumed the anti- freeze will be Ethylene Glycol with corrosion inhibitor.
System Details	Anti Freeze	When selecting anti-freeze make sure it includes corrosion inhibitors and is suitable for all metal materials used in the installation, ie. brass, steel etc. Anti-freeze with corrosion inhibitors must be maintained regularly in accordance with manufacturer's instruction.
Manifold Details	Flow Temperature Control Components	The Flow Temperature Mixer Unit requires a supply temperature from the heat source between 33°C and 70°C to be able to provide the required output.
Manifold Details	Flow Temperature Control Components	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Control Details	Zone Control	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Performance Details	Required Output	The target output (heat load/cooling load) reflects the information provided by the requesting party. REHAU has not verified if it covers the load requirements of the building or of particular areas of the building. We recommend to verify the load requirements by conducting a heat load / cooling load calculation.

REHAU HYDRONIC SYSTEM

PERFORMANCE OVERVIEW - PROPOSED FINAL*

L (mm)

PROJECT NO.	19-101	
PROJECT NAME	46-48 Cryers Road	
INSTALLER	Plumbcraft	
DATE	19/03/2019	
DESIGN BY	REHAU Design Team	

Floor layer:	<u>L (mm)</u>
Wear Slab	150
Insulation	200
Concrete Cover	38
Pipe center	
Concrete Cover	112
Sand	2000

Floor layer

L (mm)

N/A

N/A

N/A

N/A

Floor layer

V.8.1

HYDRAULICS		_	PERF
Pipe type	RAUTHERM S 20		No. of
Heating Flow temp	23	°C	No. of
Cooling Flow temp	NA	°C	Condi

PERFORMANCE SU	JMMARY	
No. of zones	3	
No. of circuits	12	
Conditioned Area	550.8	m²

			Room Parame	eters								Heating	Perforn	nance								Cooling	j perforn	nance			
Room(s)	Zone	Area	Room Thermostat	Floor System	Floor type	Floor Covering	Pipe spacing	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Heat Output	Heat output up	Heat output down	Percent Covered	Total Slab Output	inside	Temp below/ outside	∆T flow/ return	rate	Temp	Output	up	Cooling output down	Percent Covered	Total Slab Output
		m²					mm	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W
Freezer 1	1	183.6	None		Slab on ground		400	-25.0	5.0	5.0	11.7	-24	7	7	13	103	3624										
Freezer 2	2	183.6	None		Slab on ground		400	-25.0	5.0	5.0	11.7	-24	7	7	13	103	3624										
Freezer 3	3	183.6	None	Freezer	Slab on ground	None	400	-25.0	5.0	5.0	11.7	-24	7	7	13	103	3624										
														-													
														-													
	3	550.8															10873										

* This design and the associated data have been prepared in accordance with the information provided by the requesting party. Please check if the parameter suits to your project. For minimum insulation requirements for the floor refer to the Building Code of Australia / New Zealand Building Code. When considering to use Tacker sheet, please check that the thermal and physical properties (eg. compressive stress) suit to your project. The advice is based on experience and the most recent know how but does not represent any obligation on our part.

Explanatory Notes:

 PIPE SPACING
 Proposed pipe laying distance. Laying the pipes in a different spacing will influence the performance of the system.

 TEMPERATURE ABOVE/INSIDE
 Target temperature for the conditioned area above the slab (typically "Room Temperature").

 TEMPERATURE BELOW/OUTSIDE
 Temperature of the area below the slab (ie. ground temperature or room below).

 ΔT FLOW/RETURN
 Temperature of the area below the slab (ie. ground temperature or room below).

 NO. OF CIRCUITS
 Number of circuits required to cover the conditioned area.

 FLOOR SURFACE TEMPERATURE
 Surface temperature of the finished floor.

TARGET HEAT/COOLING OUTPUT HEAT/COOLING OUTPUT UP HEAT/COOLING OUTPUT DOWN

PERCENT COVERED TOTAL SLAB OUTPUT Target Heat/Cooling output as per the information provided by the requesting party. Heating/Cooling performance upwards in Watts per square meter. Heating/Cooling performance downwards in Watts per square meter (in slab-on-ground constructions = "Downward losses") Coverage of Target Heating/Cooling output in % Output (upwards + downwards) of the conditioned slab in Watts.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

	А	в	с	D	E	F	G	н	1	J	к	1	м	Ν	0
1	Project Nº:	в 19-101	C	D	E	F		H 46-48 Cryers Road	•	J		Plumbcraft	M	N	0
2	Manifol		Ground I	Floor			T Toject Name.				motalier.	Tumboran		Date	19/03/2019
3		uit Fluid Pro			C	ircuit Pipe D	Details	Flow and	l Return	Pipe		RESULTS	- Manifold	Duie	V.8.1
4		Temperature		°C	Manifold	Stainless I	HKV-D	Length) m	Nun	nber of circuits:	=		
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUT	ITAN Pink 32	Total Le	ngth of circuits:	458	m	
6		n water temp		°C		lixing Unit D		Flow rate	701	l/h		Total Flow:	701	l/h	
7	% Et	nylene Glycol		%			low Mixing Con	v		m/s		s @ Manifold:	15.5	kPa	
8		viscosity	0.0031	Pa.s	Supply t	23.0	°C	ΔPf/r	7.2	kPa	Total pressur	e including F/R	22.7	kPa	
9							%Fitting losses	20%	(estimate)						
10	I N P U T - Manife		1					ULTS-Flo							
11	-		Circuit	_						d Losses			Balancing		
12	Note: ** pressure d		length		low			Pipe		d Retun Valves			urn direction:		
13	fully ope		Σ	V	V	Velocity	Head Loss	Δp pipe	∆pFlow/F	Return valves, full open	Δp_{total}^{**}		osed => Ope		
14	Circuit Name	No.	m	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv	Turns	
15													m³/h		
16	Circuit	M1.1	117	3.0	0.050	0.247	112	13,127		2,363	15,490	2,363	1.16	2 1/4	
17	Circuit	M1.2	114	2.9	0.048	0.241	107	12,237		2,244	14,481	3,254	0.97	1 1/4	
18	Circuit	M1.3	113	2.9	0.048	0.239	106	11,949		2,205	14,154	3,542	0.92	1 1/4	
19	Circuit	M1.4	114	2.9	0.048	0.241	107	12,237		2,244	14,481	3,254	0.97	1 1/4	
20	Circuit	M1.5													
21	Circuit	M1.6			1										
22	Circuit														
23	Circuit														
24	Circuit	-													
25	Circuit														
25	Circuit														
	Circuit														
27	Circuit														
28															
29	Circuit														
30	Circuit														
31	Circuit														
32	Circuit	M1.17													
33															
				11.7										CT ANZ /	syd536

This design and the associated date have been prepared in accordance with the information proveded be the requesting party.

The advice is based on experience and the most recent know but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

	A	В	С	D	E	F	G	н	I	J	к	L	М	N	0
1	Project Nº:	19-101					Project Name:	46-48 Cryers Road			Installer:	Plumbcraft			
2	Manifol		Ground F	Floor										Date	19/03/2019
3		uit Fluid Pro				ircuit Pipe D		Flow and				RESULTS-	Manifold		V.8.1
4	-	Temperature		°C		Stainless H	Length) m	Number of circuits: 4					
5	-	Temperature	NA	°C		RAUTHER		Flow/Ret pipe			Total Ler	ngth of circuits:	458	m	
6		n water temp		°C		lixing Unit D		Flow rate		l/h		Total Flow:	701	l/h	
7	% Etł	nylene Glycol	40.0	%	5.		low Mixing Con		0.5			s @ Manifold:	15.5	kPa	
8	4	viscosity	0.0031	Pa.s	Supply t	23.0	°C	ΔPf/r	7.2	kPa	Total pressur	e including F/L	22.7	kPa	
9								%Fitting losses	20%	(estimate)					ļ
10	I N P U T - Manifo	old	<u>.</u>	1		1					ULTS-Flo		D = 1 = =		ļ
11	-		Circuit	-				Dina		d Losses	T -4-11		Balancing		
12 13	<u>Note:</u> ** pressure d fully ope	rop when valves	length Σ		low v	Velocity	Head Loss	Pipe ∆p _{pipe}		nd Retun Valves Return valves, full open	Total Loss ∆ptotal**		sed => Ope		
13		No.	 m	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv	Turns	-
14		110.			1/5	11//3	1 0/11	1.0		14	14	, iu	m³/h	Turns	
16	Circuit	M2.1	117	3.0	0.050	0.247	112	13,127		2,363	15,490	2,363	1.16	2 1/4	
17	Circuit		114	2.9	0.048	0.241	107	12,237		2,244	14,481	3,254	0.97	1 1/4	
18	Circuit		113	2.9	0.048	0.239	106	11,949		2.205	14,154	3,542	0.92	1 1/4	
19	Circuit	M2.4	114	2.9	0.048	0.241	107	12,237		2.244	14,481	3,254	0.97	1 1/4	
20	Circuit	M2.5													
21	Circuit	M2.6													
22	Circuit	M2.7													
23	Circuit	M2.8													
24	Circuit	M2.9													
25	Circuit	M2.10													
26	Circuit	M2.11													
27	Circuit	M2.12													
28	Circuit														
29	Circuit														
30	Circuit														
31	Circuit														
32	Circuit														
33															
	•			11.7	,						•	· 1		CT ANZ	Z / syd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

The advice is based on experience and the most recent know how but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

	A	в	с	D	E	F	G	н	1	J	к	1	М	N	0
1	Project N°:	19-101	C	U	L	I		46-48 Cryers Road		5	Installer:	Plumbcraft	IVI	IN IN	0
2	Manifold		Ground I	Floor			1 lojoot i tainoi	le le cijele i teau			inotanon	. iding of dit		Date	19/03/2019
3	Circ	uit Fluid Pro	perties		С	ircuit Pipe [Details	Flow and	l Return	Pipe		RESULTS	Manifold		V.8.1
4		Temperature	•	°C		Stainless I		Length	30) m	Nun	nber of circuits:	-		
5	Cooling	Temperature	NA	°C	Pipe	RAUTHER	RM S 20	Flow/Ret pipe	RAUT	ITAN Pink 32	Total Le	ngth of circuits:	458	m	
6		n water temp		°C		lixing Unit D		Flow rate		l/h		Total Flow:	701	l/h	
7		nylene Glycol		%			low Mixing Con		0.5			s @ Manifold:	15.5	kPa	
8	_	viscosity	0.0031	Pa.s	Supply t	23.0	°C	ΔPf/r	7.2	kPa	Total pressur	re including F/L	22.7	kPa	
9								%Fitting losses	20%	(estimate)	SULTS-Flo	an Cincuita			
10	INPUT - Manifo	- Manifold							Нор	d Losses	5 U L I 5 - FIO		Balancing		
11 12	<u>Note:</u> ** pressure d	rop when valves	length	FI	ow			Pipe		d Retun Valves	Total Loss		urn direction		
12	fully ope		Σ	v	V	Velocity	Head Loss	Δppipe		Return valves, full open	Δptotal**	-	sed => Ope		
14	Circuit Name	No.	m	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv .	Turns	
15													m³/h		
16	Circuit	M3.1	117	3.0	0.050	0.247	112	13,127		2,363	15,490	2,363	1.16	2 1/4	
17	Circuit	M3.2	114	2.9	0.048	0.241	107	12,237		2,244	14,481	3,254	0.97	1 1/4	
18	Circuit	M3.3	113	2.9	0.048	0.239	106	11,949		2,205	14,154	3,542	0.92	1 1/4	
19	Circuit	M3.4	114	2.9	0.048	0.241	107	12,237		2,244	14,481	3,254	0.97	1 1/4	
20	Circuit	M3.5						· · · ·							
21	Circuit	M3.6													
22	Circuit														
23	Circuit														
24	Circuit														
25	Circuit														
26	Circuit														
20	Circuit														
28	Circuit														
20	Circuit														
30	Circuit														
30	Circuit														
31	Circuit							<u> </u>							
32	Circuit	1013.17													
33	1			11.7			1				1			CT ANZ /	ovd536

This design and the associated data have been prepared in accordance with the information provided by the requesting party.

The advice is based on experience and the most recent know how but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM

BILL OF MATERIAL - PROPOSED FINAL*

V.8.1

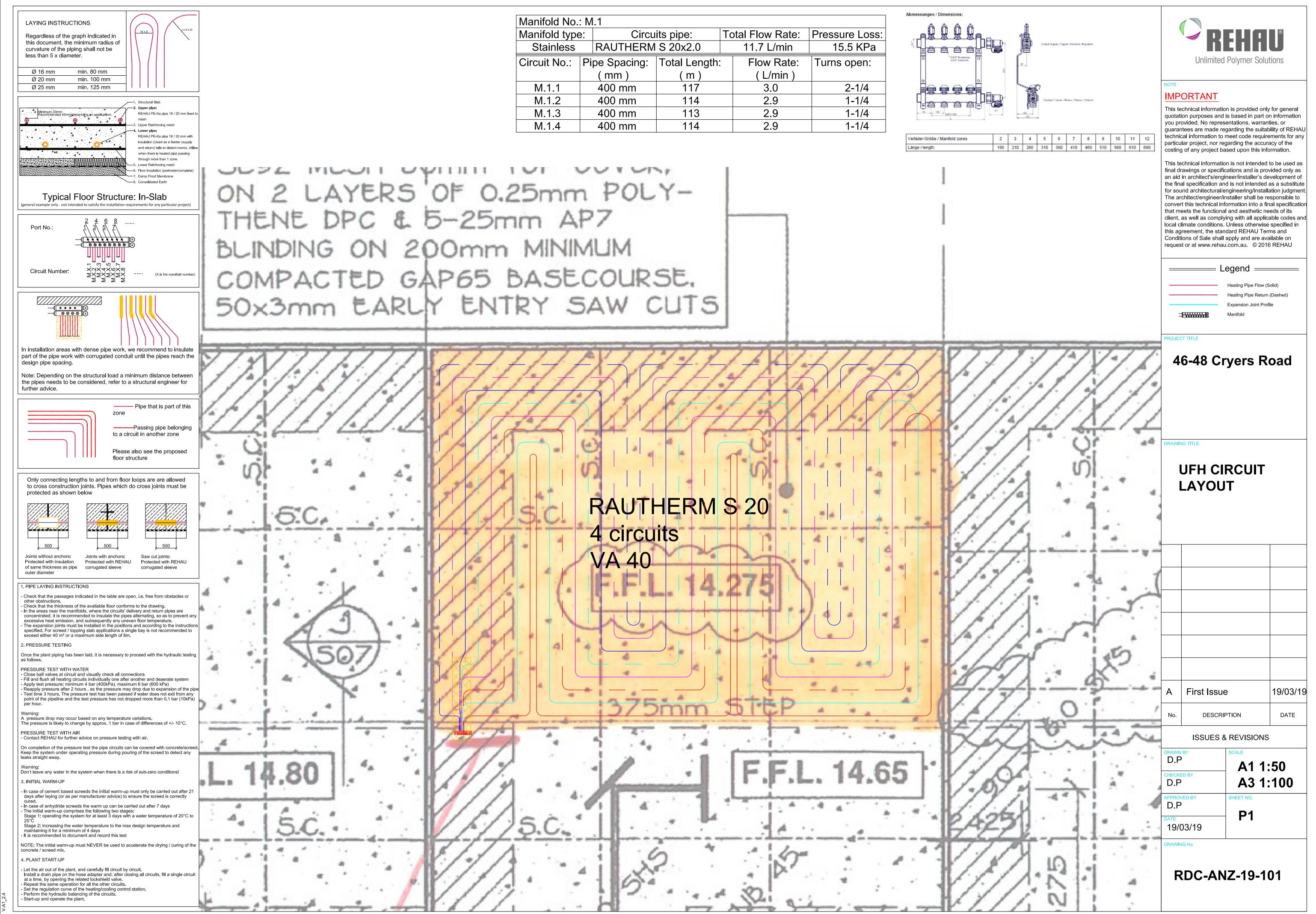
PROJECT NO.	19-101		Date	19/03/2019
PROJECT NAME	46-48 Cryers Road		Department	Construction
INSTALLER	Plumbcraft			
PROJECT OVE	RVIEW:			
Project Type		Commercial		
System		in-slab		
Pipe		RAUTHERM S 20		
Heat Source		Solar with gas booster		
Total output Heat	ting	10.9 kW		
Cooling Source		None		
Total output Cool	ling	0 kW		
Covered Floor Ar	ea	550.8 m²		

Number of Zones	3
Number of manifolds	3
Number of circuits	12
Manifold type	Stainless HKV-D
Flow Temp. system	External Flow Mixing Control

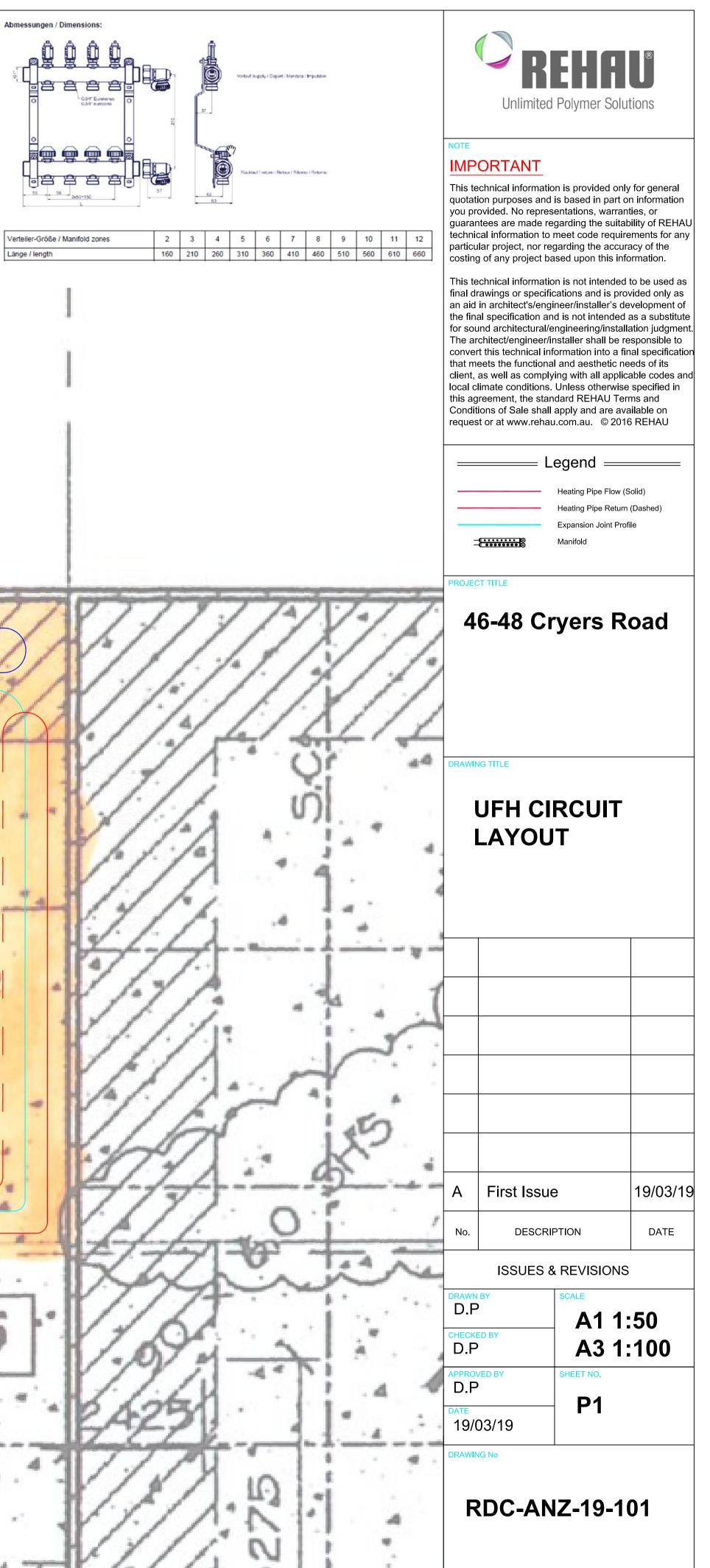
Further details see page "Performance Overview"

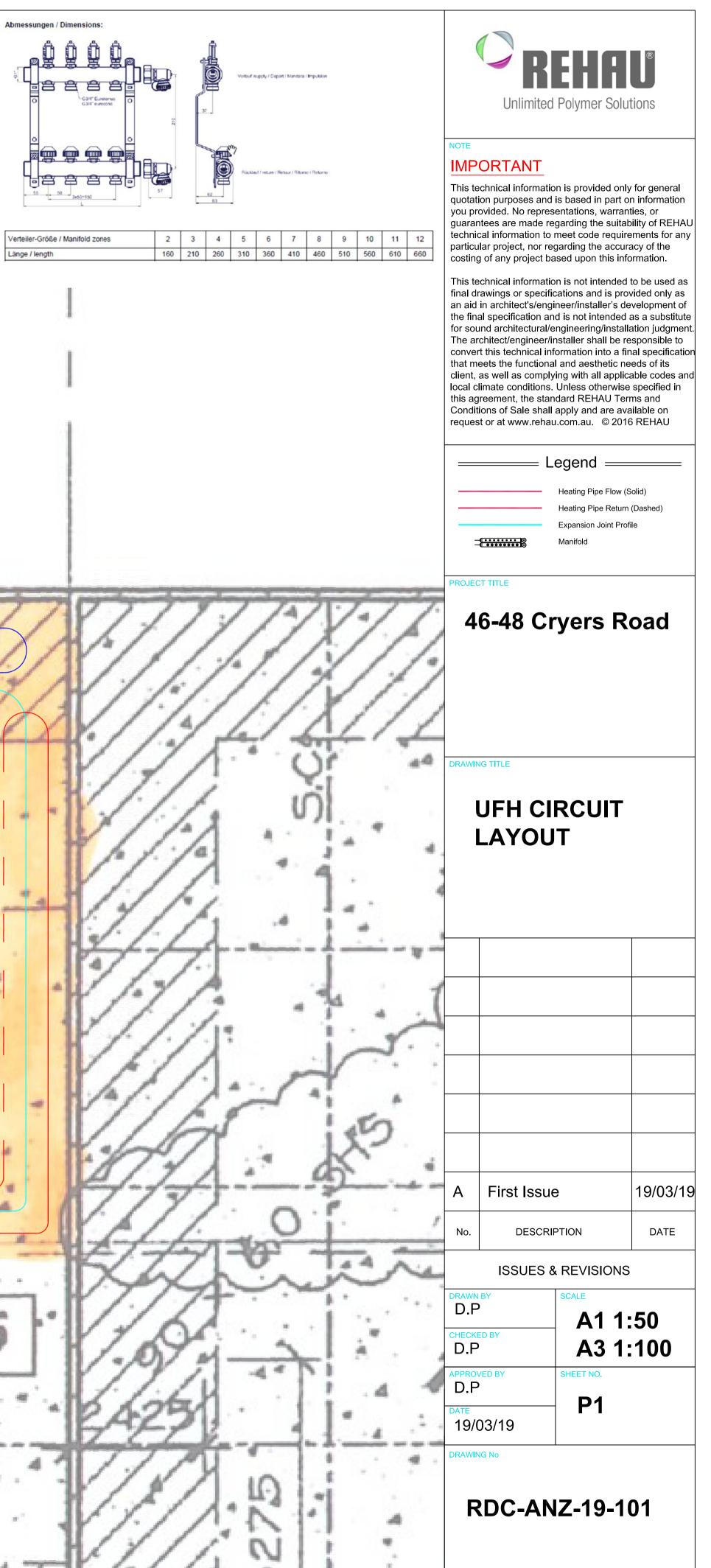
Category	Sub Category	Product Description	Availability	Article Number	Units	Est. Qty	Order Quantity
Floor Systems	RAUTITAN Pink	Pipe 32 x 4.4 mm - 6m straight	Standard	136072-006	m	90	96
Floor Systems	RAUTHERM S	Pipe 20 x 2.0 mm - 400m coil	Standard	139800-400	m	1374	1600
Floor Systems	Stainless Manifold	Stainless Steel Manifold 4-port	Standard	208041-003	ea	3	3
Floor Systems	Stainless Manifold	Ball valve set 1"	Standard	208122-001	ea	3	3
Controls	Zone Controls	Actuator 24V for brass manifold / stainless steel manifold / NEA control	Standard	241293 or 217916	ea	12	Optional
Controls	Zone Controls	Actuator 230V for brass manifold / stainless steel manifold / ADR-UFH control	Standard	241283 or 217915	ea	12	Optional
Accessories	Manifold	Manifold Union for RAUTHERM S 20 x 2.0 mm	Standard	250617-001	ea	24	24
Accessories	Conduit	Conduit for RAUTITAN Pipe 20 mm (yellow)	Standard	180262-050	m	48	50
Accessories	RAUTITAN Fittings	Polymer Profile Bend Bkt 90 Deg 20 mm	Standard	297892-001	ea	24	24
Accessories	RAUTHERM S Fittings	No. 1 Straight Coupler 20 x 2.0 mm	Standard	250317-002	ea	4	4
Accessories	RAUTHERM S Fittings	Compression Sleeve 20 x 2.0 mm	Standard	250307-002	ea	8	8

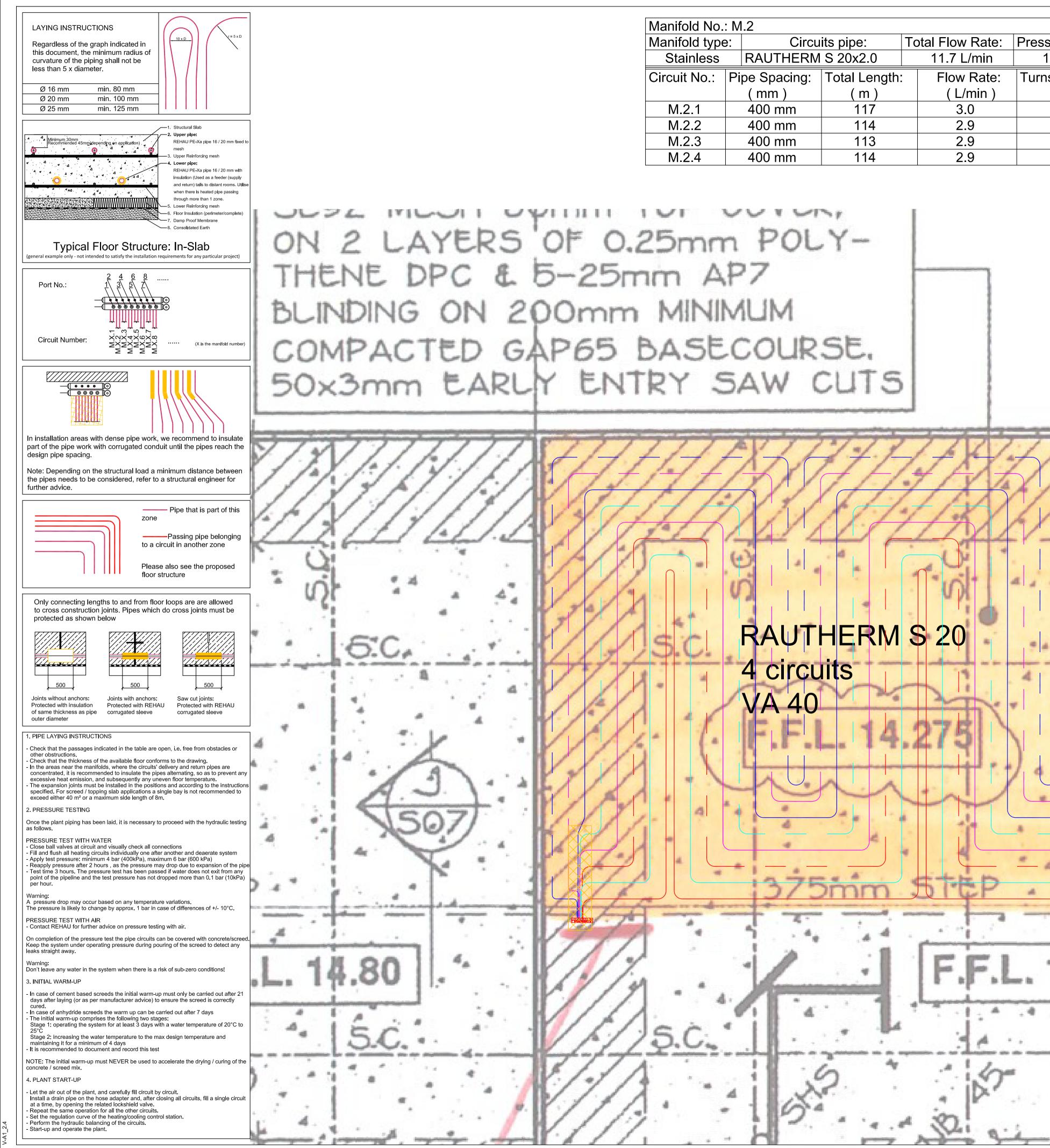
Further Hydronic Components that may be required*:

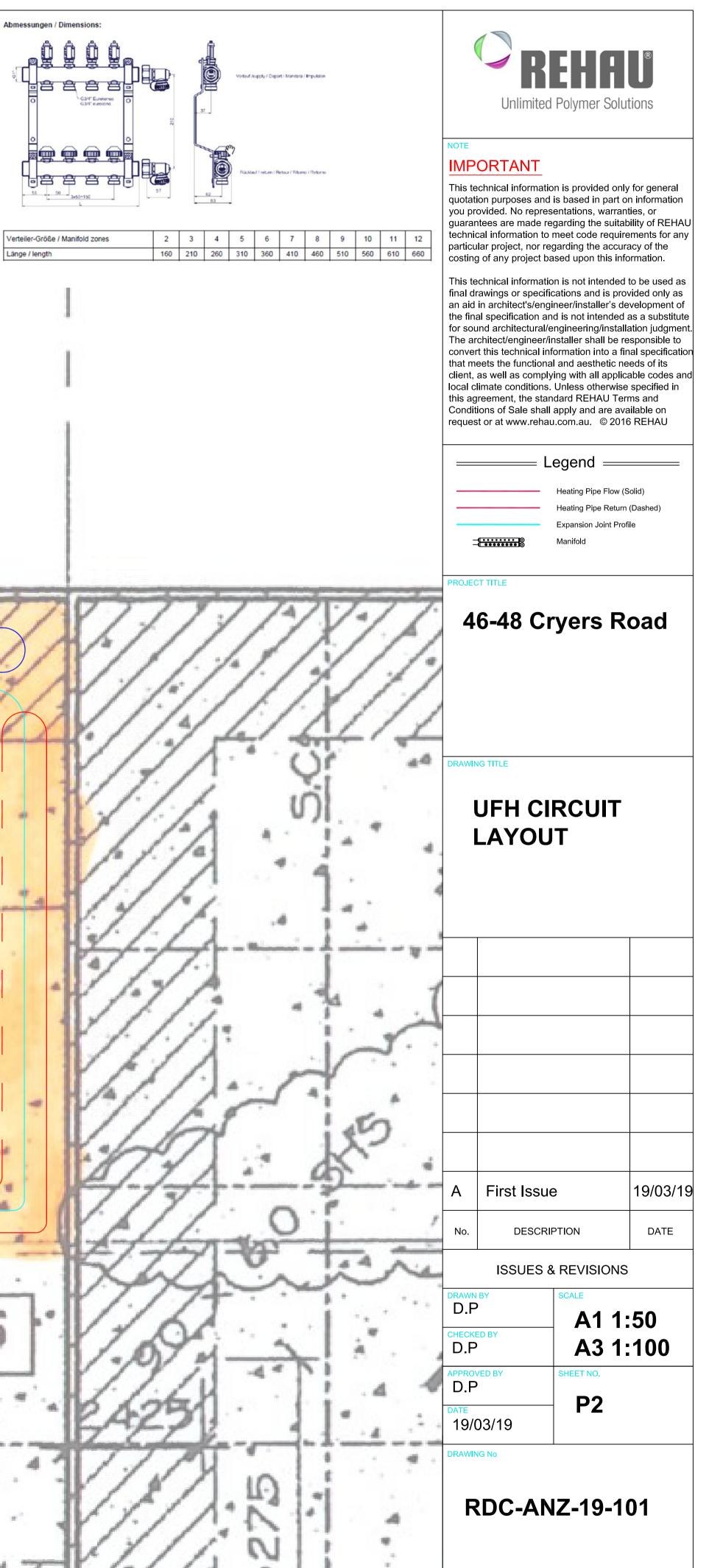

- Suitably sized energy source(s)
- Suitably sized supply and return pipe work from the energy source to the manifold(s)
- An external pump (check the internal energy source pump curve)
- Suitably sized expansion vessel
- Safety Valves and Isolating Valves
- Air Bleeding Valve
- Other

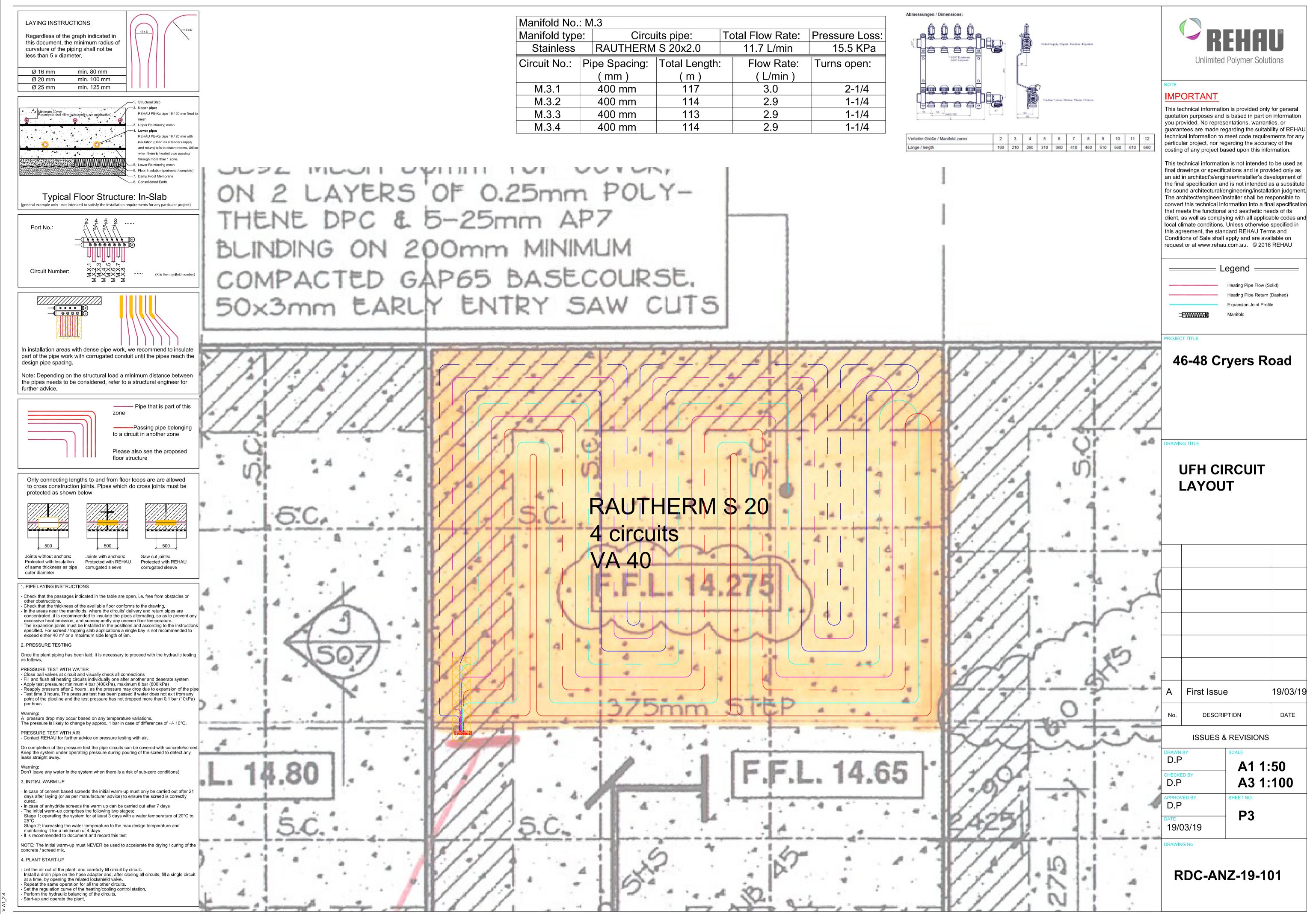
The above are only suggestions from REHAU and a proper design considering the whole hydraulic system is required to determine if the above material estimation will be sufficient to condition the space adequately.


Category	Sub Category	Product Description	Availability	Article	Units	Est.	Order
oalegoly	Sub Calegory		Availability	Number	Units	Qty	Quantity


*This is an estimate only based on the information provided to us at the time of completing this proposal. The estimate assumes the building has sufficient thermal insulation to meet local building requirements, e.g. NZBC, BCA or BASIX, prior to the installation of the REHAU components. REHAU does not accept any liability for omissions of hydronic components, installation tools and accessories, or for any discrepancy in terms of quantity of materials (overestimate or underestimate) compared to the actual requirements. This material list terminates at the UFH manifold and may not include all components required to condition the space adequately. The amount and sizes for each article may change during the final design.


Our verbal and written advice relating to technical applications and this quote is based on experience and is to the best of our knowledge correct but is given without obligation.


NA	- NA 4				
Manifold No.			Total Flow Rate:	Ι	
Manifold type	e: Circu	Circuits pipe:		Pressure Loss:	
Stainless	RAUTHERM	S 20x2.0	11.7 L/min	15.5 KPa	
Circuit No.:	Pipe Spacing:	Total Length:	Flow Rate:	Turns open:	
	(mm)	(m)	(L/min)		
M.1.1	400 mm	117	3.0	2-1/4	
M.1.2	400 mm	114	2.9	1-1/4	
M.1.3	400 mm	113	2.9	1-1/4	
M.1.4	400 mm	114	2.9	1-1/4	



Manifold No.					1	
Manifold type	e: Circu	Circuits pipe:		otal Flow Rate:	Pressure Loss:	
Stainless	RAUTHERM	1 S 20x2.0 11.7 L/mir		11.7 L/min	15.5 KPa	
Circuit No.:	Pipe Spacing:	Total Length		Flow Rate:	Turns open:	
	(mm)	(m)		(L/min)		
M.2.1	400 mm	117		3.0	2-1/4	
M.2.2	400 mm	114		2.9	1-1/4	
M.2.3	400 mm	113		2.9	1-1/4	
M.2.4	400 mm	114		2.9	1-1/4	

Manifold type	Circuits pipe:		Total Flow Rate:	Pressure Loss:		
Stainless	RAUTHERM	RAUTHERM S 20x2.0		15.5 KPa		
Circuit No.:	Pipe Spacing:	Total Length:	Flow Rate:	Turns open:	O G3/4" Europan G3/4" europan	
	(mm)	(m)	(L/min)			
M.3.1	400 mm	117	3.0	2-1/4		
M.3.2	400 mm	114	2.9	1-1/4		
M.3.3	400 mm	113	2.9	1-1/4	55 50 3x50-150	
M.3.4	400 mm	114	2.9	1-1/4		
			· ·		Verteiler-Größe / Manifold zones	
					Länge / length	