

Department Construction Name REHAU Web Design New Zealand Phone 9272 2264 Email FHDesign.ANZ@rehau.com Date 25/01/2018

Plumbcraft Sean Stephens 5 Waimana Rd Takanini 2244

REHAU Hydronic System detailed design - Heating Project: 17-3690 WARMNZ - GJG SHOWHOME POKENO

Dear Sean,

We have pleasure in submitting our detailed design documents for your above mentioned project. This design and the associated data have been prepared according to the information, diagrams and/or drawings provided. Please check and confirm all parameters and results prior to using them.

By utilising our design service and the results you recognise the current REHAU Terms and Conditions of Sale, which are available on request or at www.rehau.com/LZB.

In case this design requires amendments, please send an email with all required changes to FHDesign.ANZ@rehau.com

Additional charges may apply for design changes or required corrections not caused by us.

We thank you for your interest in the REHAU Hydronic System detailed design and look forward to the application of our products.

Please do not hesitate to contact us if you require any further clarification or assistance.

Kind regards

REHAU Web Design New Zealand REHAU Pty Ltd

Attachments:

Performance overview (proposed final) Hydraulic Balancing Data for each manifold Bill Of Material (proposed final) Circuit layout as CAD drawing

REHAU HYDRONIC SYSTEM

DESIGN NOTES

		V.7.9
PROJECT NO.	17-3690	
PROJECT NAME	WARMNZ - GJG SHOWHOME POKENO	
INSTALLER	Plumbcraft	
DATE	25/01/2018	

These design notes shall provide guidance on obviously conflicting parameters. Please read them carefully.

	Parameter	Design Notes
Manifold Details	Flow Temperature Control Components	The Flow Temperature Mixer Unit requires a supply temperature from the heat source between 58°C and 70°C to be able to provide the required output.
Floor Structure	Insulation	As per the NZBC, the insulation requirements must be assessed according to Clause H1 and any other relevant standards.
Control Details	Zone Control	Further Control Components may be required for this application, check the Bill of Material and confirm the included control components suit your requirements.
Performance Details	Required Output	The target output (heat load/cooling load) reflects the information provided by the requesting party. REHAU has not verified if it covers the load requirements of the building or of particular areas of the building. We recommend to verify the load requirements by conducting a heat load / cooling load calculation.
Performance Details	Required Output	The target heat load as specified by the requesting party can't be achieved in some areas. Please verify the required heat load for these areas and if an additional heat source may be required. Refer to page "Performance Overview" for details.

REHAU HYDRONIC SYSTEM

PERFORMANCE OVERVIEW - PROPOSED FINAL*

L (mm)

N/A

N/A

Floor layer

V.7.9

PROJECT NO.	17-3690
PROJECT NAME	WARMNZ - GJG SHOWHOME POKENO
INSTALLER	Plumbcraft
DATE	25/01/2018
DESIGN BY	REHAU Design Team

Suggest 200mm pipe spacing for all area, please confirm.

HYDRAULICS		_	PERFORMANCE SUMMARY					
Pipe type	RAUTITAN pink 16		No. of zones	7				
Heating Flow temp	48	°C	No. of circuits	11				
Cooling Flow temp	NA	°C	Conditioned Area	131.3				

			Room Parame	eters								Heating	Perform	nance								Cooling	g perforr	nance			
Room(s)	Zone	Area	Room Thermostat	Floor System	Floor type	Floor Covering	Pipe spacing	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Heat Output	Heat output up	Heat output down	Percent Covered	Total Slab Output	Temp above/ inside	Temp below/ outside	∆T flow/ return	Area flow rate	Floor Surface Temp	Target Cooling Output		Cooling output down	Percent Covered	Total Slab Output
		m²					mm	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W	°C	°C	°C	L/min	°C	W/m ²	W/m ²	W/m ²	%	W
Bed2,wir	1	20.3	None	Ground Floor	Slab on ground	Carpet, 10mn	200	18.0	10.0	7.0	3.7	25	80	79	10	99	1802										1
Ensuite2	1	2.6	None	Ground Floor	Slab on ground	Tiles, 10mm	200	18.0	10.0	10.4	0.5	29	80	125	8	156	344										1
Bed3	2	10.0	None	Ground Floor	Slab on ground	Carpet, 10mn	200	18.0	10.0	7.0	1.8	25	80	79	10	99	888										1
Bed4	3	10.0	None	Ground Floor	Slab on ground	Carpet, 10mn	200	18.0	10.0	7.0	1.8	25	80	79	10	99	888										1
Bathroom	4	4.3	None	Ground Floor	Slab on ground	Tiles, 10mm	200	21.0	10.0	7.0	1.1	32	80	118	8	148	543										1
Bed1,wir	5	15.5	None	Ground Floor	Slab on ground	Carpet, 10mn	200	18.0	10.0	7.0	2.8	25	80	79	10	99	1376										1
Ensuite1	5	3.6	None	Ground Floor	Slab on ground		200	18.0	10.0	10.4	0.7	29	80	125	8	156	477										
Entry, Kitchen, Family, Dining	6	48.5	None	Ground Floor	Slab on ground	Timber, thinn	200	21.0	10.0	16.5	3.4	27	80	71	8	89	3831										
Living	7	16.5	None	Ground Floor	Slab on ground	Carpet, 10mn	200	21.0	10.0	5.0	4.0	28	80	73	10	91	1372										
																1 1											
																1 1											
	1																										
	1																										
	1																										
																			1								
																		1									
	1		1		1													1				t –					
																		1									
																		1									
																		1									
	7	131.3			1	1	I		L			I					11520		1	I		L					

Ground Floor (R=2.69 m².K/W)

L (mm)

42

58

50

2000

Floor layer:

Concrete Cover

Concrete Cover

Other Insulation

Clay

----- Pipe center ------

* This design and the associated data have been prepared in accordance with the information provided by the requesting party. Please check if the parameter suits to your project. For minimum insulation requirements for the floor refer to the Building Code of Australia / New Zealand Building Code. When considering to use Tacker sheet, please check that the thermal and physical properties (eg. compressive stress) suit to your project. The advice is based on experience and the most recent know how but does not represent any obligation on our part.

Explanatory Notes:

 PIPE SPACING
 Proposed pipe laying distance. Laying the pipes in a different spacing will influence the performance of the system.

 TEMPERATURE ABOVE/INSIDE
 Target temperature for the conditioned area above the slab (typically "Room Temperature").

 TEMPERATURE BELOW/OUTSIDE
 Temperature of the area below the slab (ie. ground temperature or room below).

 ΔT FLOW/RETURN
 Temperature of the area below the slab (ie. ground temperature or room below).

 NO. OF CIRCUITS
 Number of circuits required to cover the conditioned area.

 FLOOR SURFACE TEMPERATURE
 Surface temperature of the finished floor.

TARGET HEAT/COOLING OUTPUT HEAT/COOLING OUTPUT UP HEAT/COOLING OUTPUT DOWN

N/A

N/A

Floor layer

L (mm)

PERCENT COVERED TOTAL SLAB OUTPUT Target Heat/Cooling output as per the information provided by the requesting party. Heating/Cooling performance upwards in Watts per square meter. Heating/Cooling performance downwards in Watts per square meter (in slab-on-ground constructions = "Downward losses") Coverage of Target Heating/Cooling output in % Output (upwards + downwards) of the conditioned slab in Watts.

REHAU HYDRONIC SYSTEM MANIFOLD VALVE SETTINGS - HYDRAULIC BALANCING

	А	В	с	D	E	F	G	н	I	L	к	1	М	Ν	0
1		17-3690	C	D	L		-	WARMNZ - GJG S	HOWHC	-	Installer:	Plumbcraft	IVI	IN IN	
2	Manifol		Ground F	Floor			1 ojoot Hallioi				inotanon	. Idino or all		Date	25/01/2018
3	Circ	uit Fluid Pro	perties		C	ircuit Pipe I	Details	Flow and Return Pipe				RESULTS-		V.7.9	
4	Heating	Temperature	48.0	°C		Stainless I		Length	10) m	Nun	Number of circuits: 11			
5	0	Temperature		°C		RAUTITAN		Flow/Ret pipe			Total Le	ngth of circuits:	677	m	
6		n water temp		°C		lixing Unit D		Flow rate				Total Flow:	1298	l/h	
7		nylene Glycol		%			low Mixing Con	V	1.4			s @ Manifold:	18.8	kPa	
8	-	viscosity	0.0006	Pa.s	Supply t	48.0	°C	ΔPf/r	15.2	kPa	I otal pressur	e including F/R	34.0	kPa	
9						%Fitting losses	20%	, ,							
10							1				ULTS-Flo		Delensing		
11			Circuit		low			Pipe		d Losses nd Retun Valves	Total Loss		Balancing		
12 13	<u>Note:</u> ** pressure d fully ope	rop when valves	length Σ	V F		Velocity	Head Loss			Return valves, full open	Dtotal ^{**}	-	sed => Ope		
13		No.	m	l/min	l/s	m/s	Pa/m	Pa		Pa	Pa	Pa	Kv	Turns	
		110.			1/3	11//3	1 6/11	10		īα	10	10	m³/h	Turns	
15	Circuit	NA1 1	46	1.7	0.028	0.268	117	5,396		716	6,113	13,400	0.28	1/4	
16	Circuit		-					· · ·		974	· · ·	· · · · · · · · · · · · · · · · · · ·		1/4	
17	Circuit		54 55	2.0 2.0	0.033	0.313	152 155	8,218 8,470		974 996	9,192	10,578 10,326	0.37	1/4	
18	Circuit	-	53	1.9	0.033	0.310		· · ·		939	9,466	· · · · · · · · · · · · · · · · · · ·		1/4	
19				-			147	7,808			8,747	10,988	0.35		
20	Circuit		26	1.4	0.023	0.216	80	2,099		464	2,563	16,698	0.20	1/4	
21	Circuit		62	2.3	0.038	0.356	191	11,733		1,264	12,997	7,063	0.51	2/4	
22	Circuit		71	2.6	0.043	0.409	243	17,131		1,666	18,796	1,666	1.20	2 2/4	
23	Circuit	-	101	1.4	0.023	0.220	83	8,331		481	8,813	10,465	0.26	1/4	
24	Circuit		109	1.5	0.025	0.237	94	10,237		560	10,797	8,559	0.31	1/4	
25	Circuit	M1.10	52	2.5	0.042	0.395	229	11,889		1,558	13,448	6,907	0.57	2/4	
26	Circuit	M1.11	50	2.4	0.040	0.377	211	10,444		1,418	11,862	8,352	0.50	2/4	
27	Circuit	M1.12													
28	Circuit	M1.13													
29	Circuit	M1.14													
30	Circuit	M1.15													
31	Circuit	M1.16													
32	Circuit	M1.17													
33															
	•			21.6	;									CT ANZ /	syd536

This design and the associated date have been prepared in accordance with the information proveded be the requesting party.

The advice is based on experience and the most recent know but does not represent any obligation on our part.

REHAU HYDRONIC SYSTEM

BILL OF MATERIAL - PROPOSED FINAL*

25/01/2018

Department Construction

Date

V.7.9

 PROJECT NO.
 17-3690

 PROJECT NAME
 WARMNZ - GJG SHOWHOME POKENO

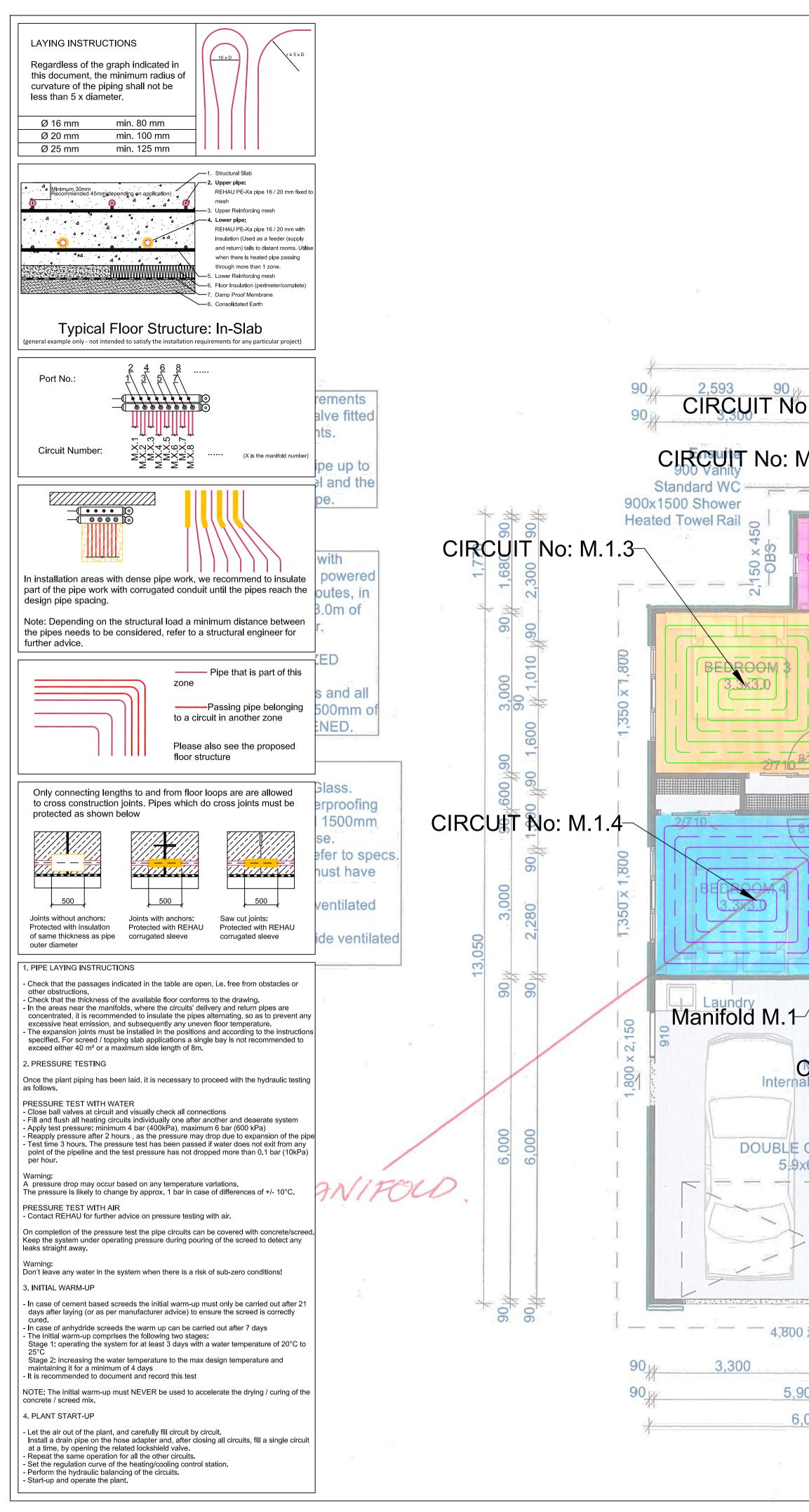
 INSTALLER
 Plumbcraft

PROJECT OVERVIEW:	
Project Type	Residential
System	in-slab
Pipe	RAUTITAN pink 16
Heat Source	Heat pump
Total output Heating	11.5 kW
Cooling Source	None
Total output Cooling	0 kW
Covered Floor Area	131.3 m²
Number of Zones	7
Number of manifolds	1
Number of circuits	11
Manifold type	Stainless HKV-D
Flow Temp. system	External Flow Mixing Control

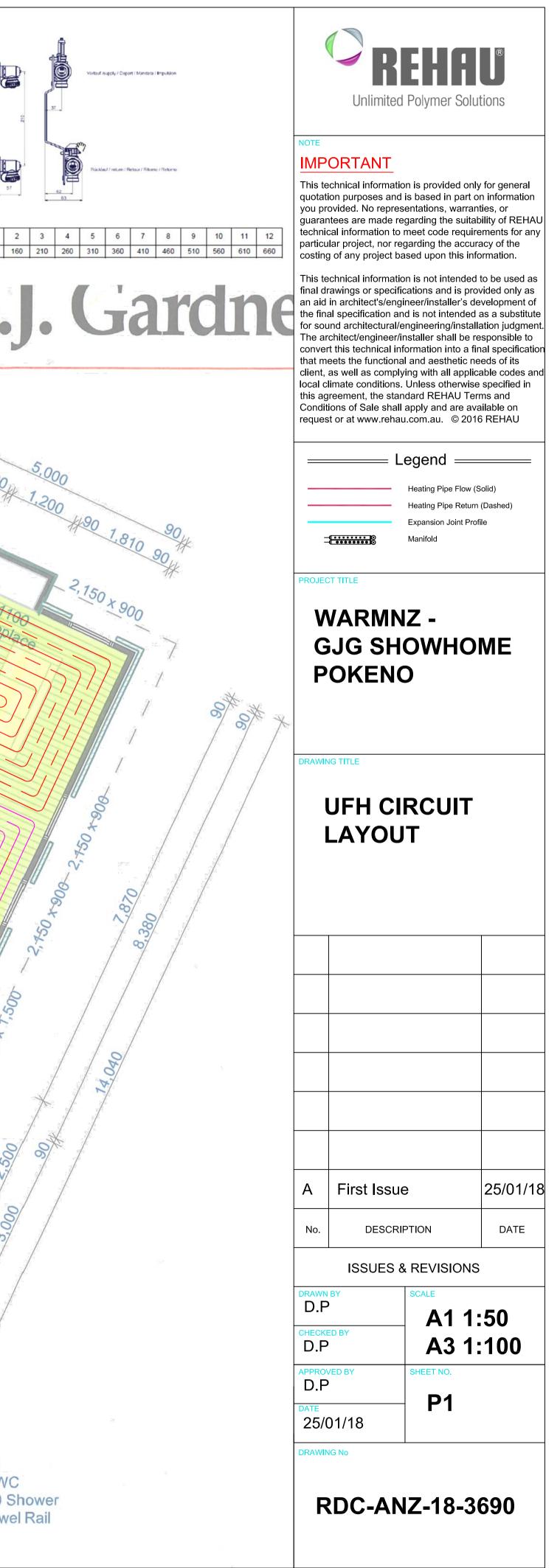
Further details see page "Performance Overview"

Category	Sub Category	Product Description	Availability	Article Number	Units	Est. Qty	Order Quantity
Floor Systems	RAUTITAN Pink	Pipe 16 x 2.2 mm - 200m coil	Standard	136042-200	m	677	800
Floor Systems	RAUTITAN Pink	Pipe 25 x 3.5 mm - 6m straight	Standard	136062-006	m	10	12
Floor Systems	Stainless Manifold	Stainless Steel Manifold 12-port	Standard	208121-003	ea	1	1
Floor Systems	Stainless Manifold	Ball valve set 1"	Standard	208122-001	ea	1	1
Controls	Zone Controls	Actuator 24V for polymer manifold / NEA control	Standard	240131 or 217916	ea	11	Optional
Controls	Zone Controls	Actuator 230V for polymer manifold / ADR-UFH control	Standard	240011 or 217915	ea	11	Optional
Accessories	Manifold	Manifold Union 16 x 2.0mm, 16 x 2.2 mm	Standard	266352-003	ea	22	22
Accessories	Conduit	Conduit for RAUTITAN Pipe 16 mm (yellow)	Standard	180252-050	m	66	100
Accessories	RAUTITAN PX Fittings	No. 1 Straight Coupler 16 mm	Standard	160011-001	ea	4	4
Accessories	RAUTITAN PX Fittings	Compression Sleeve 16 mm	Standard	160001-001	ea	8	8
Accessories		Polymer Profile Bend Bkt 90 Deg 16 mm	Standard	297891-001	ea	22	22

Further Hydronic Components that may be required*:


- Suitably sized energy source(s)
- Suitably sized supply and return pipe work from the energy source to the manifold(s)
- An external pump (check the internal energy source pump curve)
- Suitably sized expansion vessel
- Safety Valves and Isolating Valves
- Air Bleeding Valve
- Other

The above are only suggestions from REHAU and a proper design considering the whole hydraulic system is required to determine if the above material estimation will be sufficient to condition the space adequately.


Category	Sub Category	Product Description	Availability	Article	Units	Est.	Order
oalegoly	Sub Calegory		Availability	Number	Units	Qty	Quantity

*This is an estimate only based on the information provided to us at the time of completing this proposal. The estimate assumes the building has sufficient thermal insulation to meet local building requirements, e.g. NZBC, BCA or BASIX, prior to the installation of the REHAU components. REHAU does not accept any liability for omissions of hydronic components, installation tools and accessories, or for any discrepancy in terms of quantity of materials (overestimate or underestimate) compared to the actual requirements. This material list terminates at the UFH manifold and may not include all components required to condition the space adequately. The amount and sizes for each article may change during the final design.

Our verbal and written advice relating to technical applications and this quote is based on experience and is to the best of our knowledge correct but is given without obligation.

	Manifold No.: Manifold type		iits pipe: 1	otal Flow Rate:	Pressure Loss:	Abmessungen / Dim	∍nsions:	ſ
	Stainless	RAUTITAN p Pipe Spacing:		21.6 L/min Flow Rate:	18.8 KPa Turns open:			TICH.
	M.1.1	(mm) 200 mm	(m) 46	(L/min) 1.7	1/4	• •	G3/4" Eurokanus G3/4" eurocone	37
	M.1.2 M.1.3 M.1.4	200 mm 200 mm 200 mm	54 55 53	2.0 2.0 1.9	1/4 1/4 1/4			
	M.1.5 M.1.6	200 mm 200 mm 200 mm	26 62	1.4	1/4 1/2			
	M.1.7 M.1.8	200 mm 200 mm	71 101	2.6 1.4	2-1/2 1/4	55 50 50	x60=130	62
	M.1.9 M.1.10	200 mm 200 mm	109 52	1.5 2.5	1/4 1/2	Verteiler-Größe / Ma Länge / length	nifold zones 2 160	3 210 2
	M.1.11	200 mm	50	2.4	1/2			
9 770	μ.			5 440			G.J	•
8,770 2,217 90 kk 3,600) (<u>у</u> Ю ил	5,4	149	X		2 	
o· M 1 2→		NO KIN	a.		5 -	90 90	¥.	
M.1.1		701 3 ³⁶⁰ 199				14	1.810 904	5.00
600 x 1.8	00	annan Sananan S			Water tap	1 . 2.	90 H	1.200
			CIRC	UIT No:	M.1.9	1 m	50 × 900	~
ENSUITE 2.2x1.7 BEDRO			CIRC	CUIT No:	M.1.8	The for	Rulli in	L
3.6x	3.4	910	n ^{3.} II II II N II II II				the Eliteration	
		800 ×	11 11 11 11 11 11 11 11 11 11 11 11					
		1,1			M.1.11	XIL		7/:
			910	1-11'-17 <u>1</u> - 91		A		[i].
	VIR 50					A		
				$\dot{\boldsymbol{\varsigma}}$		DHNI	AND	J
			C - taka	A CONTRACTOR	ALL C		(A)	H
	2 AN	ALL	11	5				
		910		3///	1/1			*30°
BATHROOM						K		2,750,490
3.122	1 C				The ford and	KITCHEN	4	
					ASA I		2005	
1.350	x 1.200 ^{1,80}	00 x 2,150 2		7			20 KJ	
		^{00 x 2,150} <i>≥</i> , No: M _y	1.100		the second	In	1 L'	/
CIRCUIT No: M.1.5	5,007	×			7/1/50		1	*
8 Stor Box	athroom	1.82	0		JULT		300	8
	675 Bath oi 50 Vanity	n Frame					082 A30	/
GARAGE CIRCUIT	JOS MAL		The	*****	577	~	2	
	leated 10w						3.00	/
	Water tap	00			THWIRE			1
	Č.	90 H 1.	200 1,000	2,750		1	00/ 30	
	RCUIT	No: M.1		20		· · · ·	38	
0 x 2,200			3.710	#190 22		1 /	er l	
<u>90 kl 900 kl 90 1,520 kl</u> 90			5.18	90 90 × 1	10 90 FL	0%0	*	
900 90 H		frame: 205.			200 77	ST.	Ensuite 750 Venity	
6,080		r foundation: a: 248.10 m ²			×	2	750 Vanity Standard WC	1
							1100x1200 Sho Heated Towel F	

